mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
6acd7fb5ce
* Wrap lines that go beyond GiHub Editor * flake8 --count --select=E501 --max-line-length=127 * updating DIRECTORY.md * Update strassen_matrix_multiplication.py * fixup! Format Python code with psf/black push * Update decision_tree.py Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
106 lines
2.9 KiB
Python
106 lines
2.9 KiB
Python
"""
|
|
Author : Turfa Auliarachman
|
|
Date : October 12, 2016
|
|
|
|
This is a pure Python implementation of Dynamic Programming solution to the edit
|
|
distance problem.
|
|
|
|
The problem is :
|
|
Given two strings A and B. Find the minimum number of operations to string B such that
|
|
A = B. The permitted operations are removal, insertion, and substitution.
|
|
"""
|
|
|
|
|
|
class EditDistance:
|
|
"""
|
|
Use :
|
|
solver = EditDistance()
|
|
editDistanceResult = solver.solve(firstString, secondString)
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.__prepare__()
|
|
|
|
def __prepare__(self, N=0, M=0):
|
|
self.dp = [[-1 for y in range(0, M)] for x in range(0, N)]
|
|
|
|
def __solveDP(self, x, y):
|
|
if x == -1:
|
|
return y + 1
|
|
elif y == -1:
|
|
return x + 1
|
|
elif self.dp[x][y] > -1:
|
|
return self.dp[x][y]
|
|
else:
|
|
if self.A[x] == self.B[y]:
|
|
self.dp[x][y] = self.__solveDP(x - 1, y - 1)
|
|
else:
|
|
self.dp[x][y] = 1 + min(
|
|
self.__solveDP(x, y - 1),
|
|
self.__solveDP(x - 1, y),
|
|
self.__solveDP(x - 1, y - 1),
|
|
)
|
|
|
|
return self.dp[x][y]
|
|
|
|
def solve(self, A, B):
|
|
if isinstance(A, bytes):
|
|
A = A.decode("ascii")
|
|
|
|
if isinstance(B, bytes):
|
|
B = B.decode("ascii")
|
|
|
|
self.A = str(A)
|
|
self.B = str(B)
|
|
|
|
self.__prepare__(len(A), len(B))
|
|
|
|
return self.__solveDP(len(A) - 1, len(B) - 1)
|
|
|
|
|
|
def min_distance_bottom_up(word1: str, word2: str) -> int:
|
|
"""
|
|
>>> min_distance_bottom_up("intention", "execution")
|
|
5
|
|
>>> min_distance_bottom_up("intention", "")
|
|
9
|
|
>>> min_distance_bottom_up("", "")
|
|
0
|
|
"""
|
|
m = len(word1)
|
|
n = len(word2)
|
|
dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
|
|
for i in range(m + 1):
|
|
for j in range(n + 1):
|
|
|
|
if i == 0: # first string is empty
|
|
dp[i][j] = j
|
|
elif j == 0: # second string is empty
|
|
dp[i][j] = i
|
|
elif (
|
|
word1[i - 1] == word2[j - 1]
|
|
): # last character of both substing is equal
|
|
dp[i][j] = dp[i - 1][j - 1]
|
|
else:
|
|
insert = dp[i][j - 1]
|
|
delete = dp[i - 1][j]
|
|
replace = dp[i - 1][j - 1]
|
|
dp[i][j] = 1 + min(insert, delete, replace)
|
|
return dp[m][n]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
solver = EditDistance()
|
|
|
|
print("****************** Testing Edit Distance DP Algorithm ******************")
|
|
print()
|
|
|
|
S1 = input("Enter the first string: ").strip()
|
|
S2 = input("Enter the second string: ").strip()
|
|
|
|
print()
|
|
print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2)))
|
|
print("The minimum Edit Distance is: %d" % (min_distance_bottom_up(S1, S2)))
|
|
print()
|
|
print("*************** End of Testing Edit Distance DP Algorithm ***************")
|