mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
e7ab06f5de
* Implemented minimum steps to one using tabulation. * Update minimum_steps_to_one.py Made the parameter "n" more descriptive. Changed it to number * `n` to `number` Co-authored-by: John Law <johnlaw.po@gmail.com>
66 lines
1.3 KiB
Python
66 lines
1.3 KiB
Python
"""
|
|
YouTube Explanation: https://www.youtube.com/watch?v=f2xi3c1S95M
|
|
|
|
Given an integer n, return the minimum steps to 1
|
|
|
|
AVAILABLE STEPS:
|
|
* Decrement by 1
|
|
* if n is divisible by 2, divide by 2
|
|
* if n is divisible by 3, divide by 3
|
|
|
|
|
|
Example 1: n = 10
|
|
10 -> 9 -> 3 -> 1
|
|
Result: 3 steps
|
|
|
|
Example 2: n = 15
|
|
15 -> 5 -> 4 -> 2 -> 1
|
|
Result: 4 steps
|
|
|
|
Example 3: n = 6
|
|
6 -> 2 -> 1
|
|
Result: 2 step
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
__author__ = "Alexander Joslin"
|
|
|
|
|
|
def min_steps_to_one(number: int) -> int:
|
|
"""
|
|
Minimum steps to 1 implemented using tabulation.
|
|
>>> min_steps_to_one(10)
|
|
3
|
|
>>> min_steps_to_one(15)
|
|
4
|
|
>>> min_steps_to_one(6)
|
|
2
|
|
|
|
:param number:
|
|
:return int:
|
|
"""
|
|
|
|
if number <= 0:
|
|
raise ValueError(f"n must be greater than 0. Got n = {number}")
|
|
|
|
table = [number + 1] * (number + 1)
|
|
|
|
# starting position
|
|
table[1] = 0
|
|
for i in range(1, number):
|
|
table[i + 1] = min(table[i + 1], table[i] + 1)
|
|
# check if out of bounds
|
|
if i * 2 <= number:
|
|
table[i * 2] = min(table[i * 2], table[i] + 1)
|
|
# check if out of bounds
|
|
if i * 3 <= number:
|
|
table[i * 3] = min(table[i * 3], table[i] + 1)
|
|
return table[number]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|