Python/project_euler/problem_049/sol1.py
Dhruv 44254cf112
Rename Project Euler directories and other dependent changes (#3300)
* Rename all Project Euler directories:

Reason:
The change was done to maintain consistency throughout the directory
and to keep all directories in sorted order.

Due to the above change, some config files had to be modified:
'problem_22` -> `problem_022`

* Update scripts to pad zeroes in PE directories
2020-10-15 12:43:28 +05:30

140 lines
3.5 KiB
Python

"""
Prime permutations
Problem 49
The arithmetic sequence, 1487, 4817, 8147, in which each of
the terms increases by 3330, is unusual in two ways:
(i) each of the three terms are prime,
(ii) each of the 4-digit numbers are permutations of one another.
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes,
exhibiting this property, but there is one other 4-digit increasing sequence.
What 12-digit number do you form by concatenating the three terms in this sequence?
Solution:
First, we need to generate all 4 digits prime numbers. Then greedy
all of them and use permutation to form new numbers. Use binary search
to check if the permutated numbers is in our prime list and include
them in a candidate list.
After that, bruteforce all passed candidates sequences using
3 nested loops since we know the answer will be 12 digits.
The bruteforce of this solution will be about 1 sec.
"""
from itertools import permutations
from math import floor, sqrt
def is_prime(number: int) -> bool:
"""
function to check whether the number is prime or not.
>>> is_prime(2)
True
>>> is_prime(6)
False
>>> is_prime(1)
False
>>> is_prime(-800)
False
>>> is_prime(104729)
True
"""
if number < 2:
return False
for i in range(2, floor(sqrt(number)) + 1):
if number % i == 0:
return False
return True
def search(target: int, prime_list: list) -> bool:
"""
function to search a number in a list using Binary Search.
>>> search(3, [1, 2, 3])
True
>>> search(4, [1, 2, 3])
False
>>> search(101, list(range(-100, 100)))
False
"""
left, right = 0, len(prime_list) - 1
while left <= right:
middle = (left + right) // 2
if prime_list[middle] == target:
return True
elif prime_list[middle] < target:
left = middle + 1
else:
right = middle - 1
return False
def solution():
"""
Return the solution of the problem.
>>> solution()
296962999629
"""
prime_list = [n for n in range(1001, 10000, 2) if is_prime(n)]
candidates = []
for number in prime_list:
tmp_numbers = []
for prime_member in permutations(list(str(number))):
prime = int("".join(prime_member))
if prime % 2 == 0:
continue
if search(prime, prime_list):
tmp_numbers.append(prime)
tmp_numbers.sort()
if len(tmp_numbers) >= 3:
candidates.append(tmp_numbers)
passed = []
for candidate in candidates:
length = len(candidate)
found = False
for i in range(length):
for j in range(i + 1, length):
for k in range(j + 1, length):
if (
abs(candidate[i] - candidate[j])
== abs(candidate[j] - candidate[k])
and len(set([candidate[i], candidate[j], candidate[k]])) == 3
):
passed.append(
sorted([candidate[i], candidate[j], candidate[k]])
)
found = True
if found:
break
if found:
break
if found:
break
answer = set()
for seq in passed:
answer.add("".join([str(i) for i in seq]))
return max([int(x) for x in answer])
if __name__ == "__main__":
print(solution())