mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 13:31:07 +00:00
4d0a8f2355
* optimized recursive_bubble_sort * Fixed doctest error due whitespace * reduce loop times for optimization * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
380 lines
11 KiB
Python
380 lines
11 KiB
Python
"""
|
|
Created on Mon Feb 26 14:29:11 2018
|
|
|
|
@author: Christian Bender
|
|
@license: MIT-license
|
|
|
|
This module contains some useful classes and functions for dealing
|
|
with linear algebra in python.
|
|
|
|
Overview:
|
|
|
|
- class Vector
|
|
- function zeroVector(dimension)
|
|
- function unitBasisVector(dimension,pos)
|
|
- function axpy(scalar,vector1,vector2)
|
|
- function randomVector(N,a,b)
|
|
- class Matrix
|
|
- function squareZeroMatrix(N)
|
|
- function randomMatrix(W,H,a,b)
|
|
"""
|
|
|
|
|
|
import math
|
|
import random
|
|
|
|
|
|
class Vector:
|
|
"""
|
|
This class represents a vector of arbitrary size.
|
|
You need to give the vector components.
|
|
|
|
Overview about the methods:
|
|
|
|
constructor(components : list) : init the vector
|
|
set(components : list) : changes the vector components.
|
|
__str__() : toString method
|
|
component(i : int): gets the i-th component (start by 0)
|
|
__len__() : gets the size of the vector (number of components)
|
|
euclidLength() : returns the euclidean length of the vector.
|
|
operator + : vector addition
|
|
operator - : vector subtraction
|
|
operator * : scalar multiplication and dot product
|
|
copy() : copies this vector and returns it.
|
|
changeComponent(pos,value) : changes the specified component.
|
|
TODO: compare-operator
|
|
"""
|
|
|
|
def __init__(self, components=None):
|
|
"""
|
|
input: components or nothing
|
|
simple constructor for init the vector
|
|
"""
|
|
if components is None:
|
|
components = []
|
|
self.__components = list(components)
|
|
|
|
def set(self, components):
|
|
"""
|
|
input: new components
|
|
changes the components of the vector.
|
|
replace the components with newer one.
|
|
"""
|
|
if len(components) > 0:
|
|
self.__components = list(components)
|
|
else:
|
|
raise Exception("please give any vector")
|
|
|
|
def __str__(self):
|
|
"""
|
|
returns a string representation of the vector
|
|
"""
|
|
return "(" + ",".join(map(str, self.__components)) + ")"
|
|
|
|
def component(self, i):
|
|
"""
|
|
input: index (start at 0)
|
|
output: the i-th component of the vector.
|
|
"""
|
|
if type(i) is int and -len(self.__components) <= i < len(self.__components):
|
|
return self.__components[i]
|
|
else:
|
|
raise Exception("index out of range")
|
|
|
|
def __len__(self):
|
|
"""
|
|
returns the size of the vector
|
|
"""
|
|
return len(self.__components)
|
|
|
|
def euclidLength(self):
|
|
"""
|
|
returns the euclidean length of the vector
|
|
"""
|
|
summe = 0
|
|
for c in self.__components:
|
|
summe += c ** 2
|
|
return math.sqrt(summe)
|
|
|
|
def __add__(self, other):
|
|
"""
|
|
input: other vector
|
|
assumes: other vector has the same size
|
|
returns a new vector that represents the sum.
|
|
"""
|
|
size = len(self)
|
|
if size == len(other):
|
|
result = [self.__components[i] + other.component(i) for i in range(size)]
|
|
return Vector(result)
|
|
else:
|
|
raise Exception("must have the same size")
|
|
|
|
def __sub__(self, other):
|
|
"""
|
|
input: other vector
|
|
assumes: other vector has the same size
|
|
returns a new vector that represents the difference.
|
|
"""
|
|
size = len(self)
|
|
if size == len(other):
|
|
result = [self.__components[i] - other.component(i) for i in range(size)]
|
|
return Vector(result)
|
|
else: # error case
|
|
raise Exception("must have the same size")
|
|
|
|
def __mul__(self, other):
|
|
"""
|
|
mul implements the scalar multiplication
|
|
and the dot-product
|
|
"""
|
|
if isinstance(other, float) or isinstance(other, int):
|
|
ans = [c * other for c in self.__components]
|
|
return Vector(ans)
|
|
elif isinstance(other, Vector) and (len(self) == len(other)):
|
|
size = len(self)
|
|
summe = 0
|
|
for i in range(size):
|
|
summe += self.__components[i] * other.component(i)
|
|
return summe
|
|
else: # error case
|
|
raise Exception("invalid operand!")
|
|
|
|
def copy(self):
|
|
"""
|
|
copies this vector and returns it.
|
|
"""
|
|
return Vector(self.__components)
|
|
|
|
def changeComponent(self, pos, value):
|
|
"""
|
|
input: an index (pos) and a value
|
|
changes the specified component (pos) with the
|
|
'value'
|
|
"""
|
|
# precondition
|
|
assert -len(self.__components) <= pos < len(self.__components)
|
|
self.__components[pos] = value
|
|
|
|
|
|
def zeroVector(dimension):
|
|
"""
|
|
returns a zero-vector of size 'dimension'
|
|
"""
|
|
# precondition
|
|
assert isinstance(dimension, int)
|
|
return Vector([0] * dimension)
|
|
|
|
|
|
def unitBasisVector(dimension, pos):
|
|
"""
|
|
returns a unit basis vector with a One
|
|
at index 'pos' (indexing at 0)
|
|
"""
|
|
# precondition
|
|
assert isinstance(dimension, int) and (isinstance(pos, int))
|
|
ans = [0] * dimension
|
|
ans[pos] = 1
|
|
return Vector(ans)
|
|
|
|
|
|
def axpy(scalar, x, y):
|
|
"""
|
|
input: a 'scalar' and two vectors 'x' and 'y'
|
|
output: a vector
|
|
computes the axpy operation
|
|
"""
|
|
# precondition
|
|
assert (
|
|
isinstance(x, Vector)
|
|
and (isinstance(y, Vector))
|
|
and (isinstance(scalar, int) or isinstance(scalar, float))
|
|
)
|
|
return x * scalar + y
|
|
|
|
|
|
def randomVector(N, a, b):
|
|
"""
|
|
input: size (N) of the vector.
|
|
random range (a,b)
|
|
output: returns a random vector of size N, with
|
|
random integer components between 'a' and 'b'.
|
|
"""
|
|
random.seed(None)
|
|
ans = [random.randint(a, b) for i in range(N)]
|
|
return Vector(ans)
|
|
|
|
|
|
class Matrix:
|
|
"""
|
|
class: Matrix
|
|
This class represents a arbitrary matrix.
|
|
|
|
Overview about the methods:
|
|
|
|
__str__() : returns a string representation
|
|
operator * : implements the matrix vector multiplication
|
|
implements the matrix-scalar multiplication.
|
|
changeComponent(x,y,value) : changes the specified component.
|
|
component(x,y) : returns the specified component.
|
|
width() : returns the width of the matrix
|
|
height() : returns the height of the matrix
|
|
operator + : implements the matrix-addition.
|
|
operator - _ implements the matrix-subtraction
|
|
"""
|
|
|
|
def __init__(self, matrix, w, h):
|
|
"""
|
|
simple constructor for initializing
|
|
the matrix with components.
|
|
"""
|
|
self.__matrix = matrix
|
|
self.__width = w
|
|
self.__height = h
|
|
|
|
def __str__(self):
|
|
"""
|
|
returns a string representation of this
|
|
matrix.
|
|
"""
|
|
ans = ""
|
|
for i in range(self.__height):
|
|
ans += "|"
|
|
for j in range(self.__width):
|
|
if j < self.__width - 1:
|
|
ans += str(self.__matrix[i][j]) + ","
|
|
else:
|
|
ans += str(self.__matrix[i][j]) + "|\n"
|
|
return ans
|
|
|
|
def changeComponent(self, x, y, value):
|
|
"""
|
|
changes the x-y component of this matrix
|
|
"""
|
|
if 0 <= x < self.__height and 0 <= y < self.__width:
|
|
self.__matrix[x][y] = value
|
|
else:
|
|
raise Exception("changeComponent: indices out of bounds")
|
|
|
|
def component(self, x, y):
|
|
"""
|
|
returns the specified (x,y) component
|
|
"""
|
|
if 0 <= x < self.__height and 0 <= y < self.__width:
|
|
return self.__matrix[x][y]
|
|
else:
|
|
raise Exception("changeComponent: indices out of bounds")
|
|
|
|
def width(self):
|
|
"""
|
|
getter for the width
|
|
"""
|
|
return self.__width
|
|
|
|
def height(self):
|
|
"""
|
|
getter for the height
|
|
"""
|
|
return self.__height
|
|
|
|
def determinate(self) -> float:
|
|
"""
|
|
returns the determinate of an nxn matrix using Laplace expansion
|
|
"""
|
|
if self.__height == self.__width and self.__width >= 2:
|
|
total = 0
|
|
if self.__width > 2:
|
|
for x in range(0, self.__width):
|
|
for y in range(0, self.__height):
|
|
total += (
|
|
self.__matrix[x][y]
|
|
* (-1) ** (x + y)
|
|
* Matrix(
|
|
self.__matrix[0:x] + self.__matrix[x + 1 :],
|
|
self.__width - 1,
|
|
self.__height - 1,
|
|
).determinate()
|
|
)
|
|
else:
|
|
return (
|
|
self.__matrix[0][0] * self.__matrix[1][1]
|
|
- self.__matrix[0][1] * self.__matrix[1][0]
|
|
)
|
|
return total
|
|
else:
|
|
raise Exception("matrix is not square")
|
|
|
|
def __mul__(self, other):
|
|
"""
|
|
implements the matrix-vector multiplication.
|
|
implements the matrix-scalar multiplication
|
|
"""
|
|
if isinstance(other, Vector): # vector-matrix
|
|
if len(other) == self.__width:
|
|
ans = zeroVector(self.__height)
|
|
for i in range(self.__height):
|
|
summe = 0
|
|
for j in range(self.__width):
|
|
summe += other.component(j) * self.__matrix[i][j]
|
|
ans.changeComponent(i, summe)
|
|
summe = 0
|
|
return ans
|
|
else:
|
|
raise Exception(
|
|
"vector must have the same size as the "
|
|
+ "number of columns of the matrix!"
|
|
)
|
|
elif isinstance(other, int) or isinstance(other, float): # matrix-scalar
|
|
matrix = [
|
|
[self.__matrix[i][j] * other for j in range(self.__width)]
|
|
for i in range(self.__height)
|
|
]
|
|
return Matrix(matrix, self.__width, self.__height)
|
|
|
|
def __add__(self, other):
|
|
"""
|
|
implements the matrix-addition.
|
|
"""
|
|
if self.__width == other.width() and self.__height == other.height():
|
|
matrix = []
|
|
for i in range(self.__height):
|
|
row = []
|
|
for j in range(self.__width):
|
|
row.append(self.__matrix[i][j] + other.component(i, j))
|
|
matrix.append(row)
|
|
return Matrix(matrix, self.__width, self.__height)
|
|
else:
|
|
raise Exception("matrix must have the same dimension!")
|
|
|
|
def __sub__(self, other):
|
|
"""
|
|
implements the matrix-subtraction.
|
|
"""
|
|
if self.__width == other.width() and self.__height == other.height():
|
|
matrix = []
|
|
for i in range(self.__height):
|
|
row = []
|
|
for j in range(self.__width):
|
|
row.append(self.__matrix[i][j] - other.component(i, j))
|
|
matrix.append(row)
|
|
return Matrix(matrix, self.__width, self.__height)
|
|
else:
|
|
raise Exception("matrix must have the same dimension!")
|
|
|
|
|
|
def squareZeroMatrix(N):
|
|
"""
|
|
returns a square zero-matrix of dimension NxN
|
|
"""
|
|
ans = [[0] * N for i in range(N)]
|
|
return Matrix(ans, N, N)
|
|
|
|
|
|
def randomMatrix(W, H, a, b):
|
|
"""
|
|
returns a random matrix WxH with integer components
|
|
between 'a' and 'b'
|
|
"""
|
|
random.seed(None)
|
|
matrix = [[random.randint(a, b) for j in range(W)] for i in range(H)]
|
|
return Matrix(matrix, W, H)
|