mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-22 09:12:08 +00:00
134 lines
5.1 KiB
Python
134 lines
5.1 KiB
Python
from __future__ import annotations
|
|
|
|
import sys
|
|
from collections import defaultdict
|
|
|
|
# Description for the ppm algorithm can be found at https://en.wikipedia.org/wiki/Prediction_by_partial_matching
|
|
|
|
|
|
class PPMNode:
|
|
def __init__(self) -> None:
|
|
# Initialize a PPMNode with a dictionary for child nodes
|
|
# and a count of total occurrences
|
|
self.counts: dict[str, PPMNode] = defaultdict(PPMNode)
|
|
self.total: int = 0
|
|
|
|
def __repr__(self) -> str:
|
|
return f"PPMNode(total={self.total})"
|
|
|
|
|
|
class PPM:
|
|
def __init__(self, order: int = 2) -> None:
|
|
# Initialize the PPM model with a specified order and create a root node
|
|
self.order: int = order
|
|
self.root: PPMNode = PPMNode()
|
|
self.current_context: PPMNode = self.root
|
|
|
|
def update_model(self, context: str, symbol: str) -> None:
|
|
# Update the model with the new symbol in the given context
|
|
node = self.current_context
|
|
for char in context:
|
|
# Traverse through the context characters, updating the total counts
|
|
node = node.counts[char]
|
|
node.total += 1
|
|
|
|
# Increment the count for the specific symbol in the current context
|
|
node.counts[symbol].total += 1
|
|
|
|
def compress(self, data: str) -> list[float]:
|
|
# Compress the data using the PPM algorithm and return a list of probabilities
|
|
compressed_output: list[float] = []
|
|
context: str = ""
|
|
|
|
for symbol in data:
|
|
# Update the model with the current context and symbol
|
|
self.update_model(context, symbol)
|
|
# Encode the symbol based on the current context
|
|
compressed_output.append(self.encode_symbol(context, symbol))
|
|
# Update the context by appending the symbol,
|
|
# keeping it within the specified order
|
|
context = (context + symbol)[-self.order :] # Keep the context within order
|
|
|
|
return compressed_output
|
|
|
|
def encode_symbol(self, context: str, symbol: str) -> float:
|
|
# Encode a symbol based on the current context and return its probability
|
|
node = self.root
|
|
for char in context:
|
|
# Traverse through the context to find the corresponding node
|
|
if char in node.counts:
|
|
node = node.counts[char]
|
|
else:
|
|
return 0.0 # Return 0.0 if the context is not found
|
|
|
|
# Return the probability of the symbol given the context
|
|
if symbol in node.counts:
|
|
return node.counts[symbol].total / node.total # Return probability
|
|
return 0.0 # Return 0.0 if the symbol is not found
|
|
|
|
def decompress(self, compressed_data: list[float]) -> str:
|
|
# Decompress the compressed data back into the original string
|
|
decompressed_output: list[str] = []
|
|
context: str = ""
|
|
|
|
for prob in compressed_data:
|
|
# Decode each probability to retrieve the corresponding symbol
|
|
symbol = self.decode_symbol(context, prob)
|
|
if symbol:
|
|
decompressed_output.append(symbol)
|
|
# Update the context with the newly decoded symbol
|
|
context = (context + symbol)[
|
|
-self.order :
|
|
] # Keep the context within order
|
|
else:
|
|
break # Stop if a symbol cannot be found
|
|
|
|
return "".join(decompressed_output) # Join the list into a single string
|
|
|
|
def decode_symbol(self, context: str, prob: float) -> str | None:
|
|
# Decode a symbol from the given context based on the probability
|
|
node = self.root
|
|
for char in context:
|
|
# Traverse through the context to find the corresponding node
|
|
if char in node.counts:
|
|
node = node.counts[char]
|
|
else:
|
|
return None # Return None if the context is not found
|
|
|
|
# Iterate through the children of the node to
|
|
# find the symbol matching the given probability
|
|
for symbol, child in node.counts.items():
|
|
if child.total / node.total == prob:
|
|
return symbol # Return the symbol if the probability matches
|
|
return None # Return None if the symbol is not found
|
|
|
|
|
|
def read_file(file_path: str) -> str:
|
|
"""Read the entire file and return its content as a string."""
|
|
with open(file_path) as f:
|
|
return f.read()
|
|
|
|
|
|
def ppm(file_path: str) -> None:
|
|
"""Compress and decompress the file using PPM algorithm."""
|
|
data = read_file(file_path) # Read the data from the specified file
|
|
ppm_instance = PPM(order=2) # Create an instance of the PPM model with order 2
|
|
|
|
# Compress the data using the PPM model
|
|
compressed = ppm_instance.compress(data)
|
|
print("Compressed Data (Prob abilities):", compressed)
|
|
|
|
# Decompress the data back to its original form
|
|
decompressed = ppm_instance.decompress(compressed)
|
|
print("Decompressed Data:", decompressed)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Check if the correct number of command line arguments is provided
|
|
if len(sys.argv) != 2:
|
|
print("Usage: python ppm.py <file_path>")
|
|
sys.exit(1)
|
|
|
|
# Call the ppm function with the provided file path
|
|
ppm(sys.argv[1])
|