mirror of
https://github.com/practical-tutorials/project-based-learning.git
synced 2024-11-30 15:31:11 +00:00
Added Naming Conventions to the Twitter Sentiment Analysis
This commit is contained in:
parent
0b06bd3788
commit
c4f7582747
16
README.md
16
README.md
|
@ -287,14 +287,14 @@ To get started, simply fork this repo. Please refer to [CONTRIBUTING.md](CONTRIB
|
|||
* [Train a Language Detection AI in 20 minutes](https://towardsdatascience.com/how-i-trained-a-language-detection-ai-in-20-minutes-with-a-97-accuracy-fdeca0fb7724)
|
||||
* [Object Detection With Neural Networks](https://towardsdatascience.com/object-detection-with-neural-networks-a4e2c46b4491)
|
||||
* Learn Twitter Sentiment Analysis -
|
||||
* [Part I](https://towardsdatascience.com/another-twitter-sentiment-analysis-bb5b01ebad90)
|
||||
* [Part II](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-2-333514854913)
|
||||
* [Part III](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-3-zipfs-law-data-visualisation-fc9eadda71e7)
|
||||
* [Part IV](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-4-count-vectorizer-b3f4944e51b5)
|
||||
* [Part V](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-5-50b4e87d9bdd)
|
||||
* [Part VI](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-6-doc2vec-603f11832504)
|
||||
* [Part VII](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-7-phrase-modeling-doc2vec-592a8a996867)
|
||||
* [Part VIII](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-8-dimensionality-reduction-chi2-pca-c6d06fb3fcf3)
|
||||
* [Part I - Data Cleaning](https://towardsdatascience.com/another-twitter-sentiment-analysis-bb5b01ebad90)
|
||||
* [Part II - EDA, Data Visualisation](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-2-333514854913)
|
||||
* [Part III - Zipf's Law, Data Visualisation](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-3-zipfs-law-data-visualisation-fc9eadda71e7)
|
||||
* [Part IV - Feature Extraction(count vectoriser)](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-4-count-vectorizer-b3f4944e51b5)
|
||||
* [Part V - Feature Extraction(Tfidf vectoriser)](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-5-50b4e87d9bdd)
|
||||
* [Part VI - Doc2Vec](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-6-doc2vec-603f11832504)
|
||||
* [Part VII - Phrase Modeling + Doc2Vec](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-7-phrase-modeling-doc2vec-592a8a996867)
|
||||
* [Part VIII - Dimensionality Reduction](https://towardsdatascience.com/another-twitter-sentiment-analysis-with-python-part-8-dimensionality-reduction-chi2-pca-c6d06fb3fcf3)
|
||||
* [Use Transfer Learning for custom image classification](https://becominghuman.ai/transfer-learning-retraining-inception-v3-for-custom-image-classification-2820f653c557)
|
||||
|
||||
### Miscellaneous:
|
||||
|
|
Loading…
Reference in New Issue
Block a user