69 lines
1.9 KiB
Python
Raw Normal View History

2022-10-19 00:42:52 +05:30
import cv2,time,pandas
from datetime import datetime
first_frame = None
status_list = [None, None]
time = []
df = pandas.DataFrame(columns=["Start", "End"])
video = cv2.VideoCapture(0)
while True:
check, frame = video.read()
status = 0
grey = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
grey = cv2.GaussianBlur(grey, (21, 21), 0) #blurring for accuracy
if first_frame is None: #capturing the background or the initial frame
first_frame = grey
continue
delta_frame = cv2.absdiff(first_frame, grey) #to
thresh_frame = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1]
#returns a tuple and converts the moving pixels to white
thresh_frame = cv2.dilate(thresh_frame, None, iterations=2)
(cnts,_) = cv2.findContours(thresh_frame.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
for cont in cnts:
if cv2.contourArea(cont) < 10000: #excluding negligble objects
continue
status = 1
(x, y, w, h) = cv2.boundingRect(cont)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0,255,0), 3,)
status_list.append(status)
status_list = status_list[-2:]
if status_list[-1] == 1 and status_list[-2] == 0:
time.append(datetime.now())
if status_list[-1] == 0 and status_list[-2] == 1:
time.append(datetime.now())
cv2.imshow("captured", grey)
cv2.imshow("delta", delta_frame)
cv2.imshow("Threshold", thresh_frame)
cv2.imshow("color frame", frame)
key = cv2.waitKey(1)
if key == ord('q'):
if status == 1:
time.append(datetime.now())
break
print(status)
print(status_list)
print(time)
for i in range(0, len(time), 2):
df = df.append({"Start" : time[i], "End": time[i+1]}, ignore_index=True)
df.to_csv("Times.csv")
video.release()
cv2.destroyAllWindows()