mirror of
https://github.com/metafy-social/python-scripts.git
synced 2025-02-28 10:58:42 +00:00
69 lines
1.9 KiB
Python
69 lines
1.9 KiB
Python
|
import cv2,time,pandas
|
||
|
from datetime import datetime
|
||
|
|
||
|
first_frame = None
|
||
|
status_list = [None, None]
|
||
|
time = []
|
||
|
df = pandas.DataFrame(columns=["Start", "End"])
|
||
|
|
||
|
video = cv2.VideoCapture(0)
|
||
|
|
||
|
while True:
|
||
|
check, frame = video.read()
|
||
|
status = 0
|
||
|
grey = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
|
||
|
grey = cv2.GaussianBlur(grey, (21, 21), 0) #blurring for accuracy
|
||
|
|
||
|
if first_frame is None: #capturing the background or the initial frame
|
||
|
first_frame = grey
|
||
|
continue
|
||
|
|
||
|
delta_frame = cv2.absdiff(first_frame, grey) #to
|
||
|
|
||
|
thresh_frame = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1]
|
||
|
#returns a tuple and converts the moving pixels to white
|
||
|
|
||
|
thresh_frame = cv2.dilate(thresh_frame, None, iterations=2)
|
||
|
|
||
|
(cnts,_) = cv2.findContours(thresh_frame.copy(), cv2.RETR_EXTERNAL,
|
||
|
cv2.CHAIN_APPROX_SIMPLE)
|
||
|
|
||
|
for cont in cnts:
|
||
|
if cv2.contourArea(cont) < 10000: #excluding negligble objects
|
||
|
continue
|
||
|
status = 1
|
||
|
(x, y, w, h) = cv2.boundingRect(cont)
|
||
|
cv2.rectangle(frame, (x, y), (x+w, y+h), (0,255,0), 3,)
|
||
|
status_list.append(status)
|
||
|
|
||
|
status_list = status_list[-2:]
|
||
|
|
||
|
if status_list[-1] == 1 and status_list[-2] == 0:
|
||
|
time.append(datetime.now())
|
||
|
if status_list[-1] == 0 and status_list[-2] == 1:
|
||
|
time.append(datetime.now())
|
||
|
cv2.imshow("captured", grey)
|
||
|
cv2.imshow("delta", delta_frame)
|
||
|
cv2.imshow("Threshold", thresh_frame)
|
||
|
cv2.imshow("color frame", frame)
|
||
|
|
||
|
key = cv2.waitKey(1)
|
||
|
|
||
|
if key == ord('q'):
|
||
|
if status == 1:
|
||
|
time.append(datetime.now())
|
||
|
break
|
||
|
print(status)
|
||
|
|
||
|
print(status_list)
|
||
|
print(time)
|
||
|
|
||
|
for i in range(0, len(time), 2):
|
||
|
df = df.append({"Start" : time[i], "End": time[i+1]}, ignore_index=True)
|
||
|
|
||
|
df.to_csv("Times.csv")
|
||
|
|
||
|
|
||
|
|
||
|
video.release()
|
||
|
cv2.destroyAllWindows()
|