mirror of
https://github.com/metafy-social/python-scripts.git
synced 2024-11-30 15:31:10 +00:00
81 lines
2.1 KiB
Python
81 lines
2.1 KiB
Python
|
import cv2
|
||
|
import numpy as np
|
||
|
import face_recognition
|
||
|
import os
|
||
|
from datetime import datetime
|
||
|
|
||
|
path = 'images'
|
||
|
images = []
|
||
|
personName = []
|
||
|
myList = os.listdir(path)
|
||
|
|
||
|
print(myList)
|
||
|
|
||
|
for cu_img in myList:
|
||
|
current_Img = cv2.imread(f'{path} / {cu_img}')
|
||
|
images.append(current_Img)
|
||
|
personName.append(os.path.splitext(cu_img)[0])
|
||
|
|
||
|
print(personName)
|
||
|
|
||
|
def faceEncodings(images):
|
||
|
encodeList = []
|
||
|
|
||
|
for img in images:
|
||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||
|
encode = face_recognition.face_encodings(img)[0]
|
||
|
encodeList.append(encode)
|
||
|
|
||
|
return encodeList
|
||
|
|
||
|
encodeListKnown = (faceEncodings(images))
|
||
|
print("All Encoding Complete!!!!!")
|
||
|
|
||
|
def attendance(name):
|
||
|
with open('Attendance.csv', 'r+') as f:
|
||
|
myDataList = f.readlines()
|
||
|
nameList = []
|
||
|
for line in myDataList:
|
||
|
entry = line.split(',')
|
||
|
nameList.append(entry[0])
|
||
|
|
||
|
if name not in nameList:
|
||
|
time_now = datetime.now()
|
||
|
tStr = time_now.strftime('%H:%M:%S')
|
||
|
dStr = time_now.strftime('%d/%m/%Y')
|
||
|
f.writelines(f'{name}, {tStr}, {dStr}')
|
||
|
|
||
|
|
||
|
cap = cv2.VideoCapture(0)
|
||
|
|
||
|
while True:
|
||
|
ret, frame = cap.read()
|
||
|
faces = cv2.resize(frame, (0, 0), None, 0.25, 0.25)
|
||
|
faces = cv2.cvtColor(faces, cv2.COLOR_BGR2RGB)
|
||
|
facesCurrentFrame = face_recognition.face_locations(faces)
|
||
|
encodesCurrentFrame = face_recognition.face_encodings(faces, facesCurrentFrame)
|
||
|
|
||
|
for encodeFace, faceLoc in zip(encodesCurrentFrame, facesCurrentFrame):
|
||
|
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
|
||
|
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
|
||
|
matchIndex = np.argmin(faceDis)
|
||
|
|
||
|
if matches[matchIndex]:
|
||
|
name = personName[matchIndex].upper()
|
||
|
|
||
|
y1, x2, y2, x1 = faceLoc
|
||
|
|
||
|
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
|
||
|
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
||
|
cv2.rectangle(frame, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
||
|
cv2.putText(frame, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 0, 0), 1)
|
||
|
attendance(name)
|
||
|
cv2.imshow("Camera", frame)
|
||
|
|
||
|
if cv2.waitKey(10) == 13:
|
||
|
break
|
||
|
|
||
|
cap.release()
|
||
|
|
||
|
cv2.destroyAllWindows()
|