diff --git a/Digital-Clock/Digital-Clock.py b/scripts/Digital-Clock/Digital-Clock.py
similarity index 100%
rename from Digital-Clock/Digital-Clock.py
rename to scripts/Digital-Clock/Digital-Clock.py
diff --git a/Digital-Clock/readme.md b/scripts/Digital-Clock/readme.md
similarity index 100%
rename from Digital-Clock/readme.md
rename to scripts/Digital-Clock/readme.md
diff --git a/Projects/DigitRecognitionusingRandomForestClassifier.ipynb b/scripts/RandomForest Classifier/DigitRecognitionusingRandomForestClassifier.ipynb
similarity index 96%
rename from Projects/DigitRecognitionusingRandomForestClassifier.ipynb
rename to scripts/RandomForest Classifier/DigitRecognitionusingRandomForestClassifier.ipynb
index b440c98..6014f83 100644
--- a/Projects/DigitRecognitionusingRandomForestClassifier.ipynb
+++ b/scripts/RandomForest Classifier/DigitRecognitionusingRandomForestClassifier.ipynb
@@ -3,8 +3,8 @@
{
"cell_type": "markdown",
"metadata": {
- "id": "view-in-github",
- "colab_type": "text"
+ "colab_type": "text",
+ "id": "view-in-github"
},
"source": [
""
@@ -62,11 +62,7 @@
},
"outputs": [
{
- "output_type": "display_data",
"data": {
- "text/plain": [
- ""
- ],
"text/html": [
"\n",
" "
+ ],
+ "text/plain": [
+ ""
]
},
- "metadata": {}
+ "metadata": {},
+ "output_type": "display_data"
},
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"Saving train[1].csv to train[1].csv\n"
]
@@ -270,39 +270,36 @@
},
{
"cell_type": "markdown",
- "source": [
- "**Load Dataset**"
- ],
"metadata": {
"id": "TJRApm0w0Dct"
- }
+ },
+ "source": [
+ "**Load Dataset**"
+ ]
},
{
"cell_type": "code",
- "source": [
- "dataset = pd.read_csv('train.csv')"
- ],
+ "execution_count": 4,
"metadata": {
"id": "GyOvJOoR0Lhq"
},
- "execution_count": 4,
- "outputs": []
+ "outputs": [],
+ "source": [
+ "dataset = pd.read_csv('train.csv')"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "**Summarize dataset**"
- ],
"metadata": {
"id": "0txmydWY0ZEH"
- }
+ },
+ "source": [
+ "**Summarize dataset**"
+ ]
},
{
"cell_type": "code",
- "source": [
- "print(dataset.shape)\n",
- "print(dataset.head(5))"
- ],
+ "execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -310,11 +307,10 @@
"id": "AW-9ITV10cIY",
"outputId": "dce2cb6d-2bdb-41e5-de9e-baf122900140"
},
- "execution_count": 5,
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"(42000, 785)\n",
" label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 \\\n",
@@ -341,24 +337,24 @@
"[5 rows x 785 columns]\n"
]
}
+ ],
+ "source": [
+ "print(dataset.shape)\n",
+ "print(dataset.head(5))"
]
},
{
"cell_type": "markdown",
- "source": [
- "**Segregate Dataset into X(Input/Independent Variable) & Y(Output/Dependent Variable)**"
- ],
"metadata": {
"id": "QUh5BKq20viv"
- }
+ },
+ "source": [
+ "**Segregate Dataset into X(Input/Independent Variable) & Y(Output/Dependent Variable)**"
+ ]
},
{
"cell_type": "code",
- "source": [
- "X = dataset.iloc[:,1:]\n",
- "print(X)\n",
- "print(X.shape)"
- ],
+ "execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -366,11 +362,10 @@
"id": "OP2TX3iX09ND",
"outputId": "9c8f44e2-a503-4acf-8978-f6576706e402"
},
- "execution_count": 6,
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
" pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n",
"0 0 0 0 0 0 0 0 0 0 \n",
@@ -415,15 +410,16 @@
"(42000, 784)\n"
]
}
+ ],
+ "source": [
+ "X = dataset.iloc[:,1:]\n",
+ "print(X)\n",
+ "print(X.shape)"
]
},
{
"cell_type": "code",
- "source": [
- "Y = dataset.iloc[:,0]\n",
- "print(Y)\n",
- "print(Y.shape)"
- ],
+ "execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -431,11 +427,10 @@
"id": "2RuBl7671GH4",
"outputId": "96d6afef-f2ed-420f-d95c-826a287fa8dd"
},
- "execution_count": 7,
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"0 1\n",
"1 0\n",
@@ -452,45 +447,46 @@
"(42000,)\n"
]
}
+ ],
+ "source": [
+ "Y = dataset.iloc[:,0]\n",
+ "print(Y)\n",
+ "print(Y.shape)"
]
},
{
"cell_type": "markdown",
- "source": [
- "**Splitting Dataset into Test and Train**"
- ],
"metadata": {
"id": "o1j-AGZd1OQV"
- }
+ },
+ "source": [
+ "**Splitting Dataset into Test and Train**"
+ ]
},
{
"cell_type": "code",
- "source": [
- "from sklearn.model_selection import train_test_split\n",
- "X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size = 0.25, random_state = 0)"
- ],
+ "execution_count": 8,
"metadata": {
"id": "U_c_R4HA1SeZ"
},
- "execution_count": 8,
- "outputs": []
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size = 0.25, random_state = 0)"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "**Training**"
- ],
"metadata": {
"id": "Gf6EgvAc1vjh"
- }
+ },
+ "source": [
+ "**Training**"
+ ]
},
{
"cell_type": "code",
- "source": [
- "from sklearn.ensemble import RandomForestClassifier\n",
- "model = RandomForestClassifier()\n",
- "model.fit(X_train, y_train)"
- ],
+ "execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -498,46 +494,47 @@
"id": "RS4TAnDh1yUU",
"outputId": "4803259d-f3a1-461f-d3d0-939bc4495a64"
},
- "execution_count": 9,
"outputs": [
{
- "output_type": "execute_result",
"data": {
"text/plain": [
"RandomForestClassifier()"
]
},
+ "execution_count": 9,
"metadata": {},
- "execution_count": 9
+ "output_type": "execute_result"
}
+ ],
+ "source": [
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "model = RandomForestClassifier()\n",
+ "model.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
- "source": [
- "y_pred = model.predict(X_test)"
- ],
+ "execution_count": 10,
"metadata": {
"id": "SljeEEbs2JFT"
},
- "execution_count": 10,
- "outputs": []
+ "outputs": [],
+ "source": [
+ "y_pred = model.predict(X_test)"
+ ]
},
{
"cell_type": "markdown",
- "source": [
- "**Model Accuracy**"
- ],
"metadata": {
"id": "4XEvHILm2OF-"
- }
+ },
+ "source": [
+ "**Model Accuracy**"
+ ]
},
{
"cell_type": "code",
- "source": [
- "from sklearn.metrics import accuracy_score\n",
- "print(\"Accuracy of the Model: {0}%\".format(accuracy_score(y_test, y_pred)*100))"
- ],
+ "execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
@@ -545,26 +542,23 @@
"id": "sHEVc1Qq2Rqy",
"outputId": "06be6e32-1ba4-4035-eafb-3b3c2023abd6"
},
- "execution_count": 11,
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"Accuracy of the Model: 96.31428571428572%\n"
]
}
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score\n",
+ "print(\"Accuracy of the Model: {0}%\".format(accuracy_score(y_test, y_pred)*100))"
]
},
{
"cell_type": "code",
- "source": [
- "import matplotlib.pyplot as plt\n",
- "index=10\n",
- "print(\"Predicted \" +str(model.predict(X_test)[index]))\n",
- "plt.axis('off')\n",
- "plt.imshow(X_test.iloc[index].values.reshape((28,28)),cmap='gray')"
- ],
+ "execution_count": 13,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
@@ -573,54 +567,67 @@
"id": "iymJ1Zpj20gk",
"outputId": "ae21ce24-b957-4a30-8f04-ec5c77dd5a53"
},
- "execution_count": 13,
"outputs": [
{
- "output_type": "stream",
"name": "stdout",
+ "output_type": "stream",
"text": [
"Predicted 7\n"
]
},
{
- "output_type": "execute_result",
"data": {
"text/plain": [
""
]
},
+ "execution_count": 13,
"metadata": {},
- "execution_count": 13
+ "output_type": "execute_result"
},
{
- "output_type": "display_data",
"data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAF8UlEQVR4nO3dPWtUaxuG4XdJ4kelJqJVEAuriAja2NhaWSmxs7Ky1UoJCAEhRdKKhWBjIdqJaUQEsRFELNQ/IDaCgqIEP3DtOuyse9zzTjLXTI6j9GKShXLuB/bDzDRt2/4PyLNt2A8ArE+cEEqcEEqcEEqcEGqiGpum8b9yYYO1bdus9+dOTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgg1MewHGEcLCwvl/vPnz85tdXW1fO21a9fKfc+ePeX+58+fch+mGzdudG7z8/Ob+CQZnJwQSpwQSpwQSpwQSpwQSpwQSpwQqmnbtntsmu5xjO3evbvcFxcXy/3ChQvlvn379v/8TH+raZpyr/69h+3Nmzed27FjxzbxSTZX27br/qM5OSGUOCGUOCGUOCGUOCGUOCGUOCHUlrznPHXqVLnfvn273A8dOjTIxxmoUb7n/P79e+fW6+55lLnnhBEjTgglTgglTgglTgglTgglTgg1tp9be+LEic7t0aNH5Wt37do16McZmF6fa/vt27dy/3/uObdtq/9bvm/fvr5/Nv/m5IRQ4oRQ4oRQ4oRQ4oRQ4oRQ4oRQY3vPWX3OafI95srKSrlfv3693F+9ejXAp1lr586d5f748eNyP3nyZLlPTk52brOzs+Vr3759W+6jyMkJocQJocQJocQJocQJocQJocb2KmVubm5ov/v379/lfuvWrc5tfn6+fO3Xr1/7eqZR8OvXr85tHK9KenFyQihxQihxQihxQihxQihxQihxQqixvec8cODAhv3sXh9PefHixXK/d+/eIB9n00xPT5d7r7eE9VLdc25FTk4IJU4IJU4IJU4IJU4IJU4IJU4INbb3nA8ePOjcpqamytfevXu33JeXl8v948eP5T6qqr/TQTh37tyG/vxR4+SEUOKEUOKEUOKEUOKEUOKEUOKEUE3btt1j03SPI2xmZqbc379/v0lPkufgwYOd27t378rX7tixo9w/fPhQ7kePHu3cvnz5Ur52lLVt26z3505OCCVOCCVOCCVOCCVOCCVOCCVOCDW27+esbOV7zF6uXLnSufW6x+zl2bNn5T7Od5n9cHJCKHFCKHFCKHFCKHFCKHFCqC15lTLOJicny31ubq7cL1261Pfv/vHjR7k/efKk75+9FTk5IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IZR7zjHT655yaWmp3KuPSu1lYWGh3O/cudP3z96KnJwQSpwQSpwQSpwQSpwQSpwQSpwQakt+BeAoO3LkSLk/ffq03Pfu3dv37/78+XO5Hz58uNx99OX6fAUgjBhxQihxQihxQihxQihxQihxQijv5wxz/Pjxcl9ZWSn3qampcu/1fs3V1dXO7fz58+Vr3WMOlpMTQokTQokTQokTQokTQokTQrlKGYKZmZnO7eHDh+Vrp6enB/04aywvL3duvd6OxmA5OSGUOCGUOCGUOCGUOCGUOCGUOCGUe84NMDs7W+5Xr17t3Pbv3z/ox1nj5cuX5b64uLihv5+/5+SEUOKEUOKEUOKEUOKEUOKEUOKEUL4CsA8TE/X18P3798v9zJkzg3ycNT59+lTup0+fLvfXr18P8nH4C74CEEaMOCGUOCGUOCGUOCGUOCGUOCGU93P24ebNm+U+zHvMy5cvl7t7zNHh5IRQ4oRQ4oRQ4oRQ4oRQ4oRQ4oRQ7jn70OtzaTfS2bNny/358+eb9CRsNCcnhBInhBInhBInhBInhBInhHKVEmZpaancX7x4sUlPwrA5OSGUOCGUOCGUOCGUOCGUOCGUOCGUrwCEIfMVgDBixAmhxAmhxAmhxAmhxAmhxAmhyntOYHicnBBKnBBKnBBKnBBKnBBKnBDqH2Wm9vKr3NQPAAAAAElFTkSuQmCC",
"text/plain": [
"