mirror of
https://github.com/metafy-social/python-scripts.git
synced 2024-11-23 20:11:10 +00:00
Added plagiarism checker script
This commit is contained in:
parent
f3467cbe7e
commit
15c7b3b009
12
scripts/Plagiarism-checker/README.md
Normal file
12
scripts/Plagiarism-checker/README.md
Normal file
|
@ -0,0 +1,12 @@
|
|||
# Plagiarism Checker
|
||||
|
||||
This is a simple Python script to check plagiarism between 2 files.
|
||||
|
||||
## Using the script
|
||||
|
||||
```bash
|
||||
# install xlwt
|
||||
pip install scikit-learn
|
||||
# run script
|
||||
python script.py
|
||||
```
|
1
scripts/Plagiarism-checker/sample1.txt
Normal file
1
scripts/Plagiarism-checker/sample1.txt
Normal file
|
@ -0,0 +1 @@
|
|||
A plagiarism checker helps in preventing duplicacy in two files. This way authenticity of content is maintained.
|
1
scripts/Plagiarism-checker/sample2.txt
Normal file
1
scripts/Plagiarism-checker/sample2.txt
Normal file
|
@ -0,0 +1 @@
|
|||
A plagiarism checker helps in preventing duplicacy in two files. This way authenticity of content is maintained.
|
36
scripts/Plagiarism-checker/script.py
Normal file
36
scripts/Plagiarism-checker/script.py
Normal file
|
@ -0,0 +1,36 @@
|
|||
# Plagiarism detector using cosine similarity
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
|
||||
def Plagiarism_Checker(files, student):
|
||||
results = set()
|
||||
# converting text from the text file and storing into an array
|
||||
v = lambda Text: TfidfVectorizer().fit_transform(Text).toarray()
|
||||
# comparing of two data from two text files
|
||||
similarity = lambda doc1, doc2: cosine_similarity([doc1, doc2])
|
||||
vectors = list(zip(files, v(student)))
|
||||
|
||||
for stud, text_vector_a in vectors:
|
||||
n_vectors = vectors.copy()
|
||||
i = n_vectors.index((stud, text_vector_a))
|
||||
del n_vectors[i]
|
||||
for stud2, vector2 in n_vectors:
|
||||
# matching similairty score by comparing elements present
|
||||
# in an array
|
||||
sim_score = similarity(text_vector_a, vector2)[0][1]
|
||||
stud_pair = sorted((stud, stud2))
|
||||
match_per = (stud_pair[0], stud_pair[1],sim_score)
|
||||
results.add(match_per)
|
||||
#returns the score for matching between 2 files. percent match = score*100 %
|
||||
return results
|
||||
student_files = ["sample1.txt", "sample2.txt"]
|
||||
student_notes = []
|
||||
for file in student_files:
|
||||
# opening the file present in the current directory
|
||||
with open(file, "r") as f:
|
||||
student_notes.append(f.read())
|
||||
results = Plagiarism_Checker(student_files, student_notes)
|
||||
|
||||
for result in results:
|
||||
print("Result: ", result)
|
Loading…
Reference in New Issue
Block a user