Merge pull request #353 from YashIndane/master

Added Sudoku Solver
This commit is contained in:
Bartick Maiti 2022-10-11 16:01:41 +05:30 committed by GitHub
commit 30732c27a2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 85 additions and 0 deletions

View File

@ -0,0 +1,2 @@
This is a Sudoku Solver that uses backtracking algorithm to solve the puzzle.
Input the puzzle from command line.

View File

@ -0,0 +1,83 @@
import numpy as np
problem = []
for x in range(9):
i = input()
l = [int(v) for v in i]
problem.append(l)
#print(problem)
np_problem = np.array(problem)
fixed_coordinates = [] # first getting the coordinates where fixed numbers are present
empty_coordinates = []
for i , sub_array in enumerate(problem) :
temp = [[i , c] for c , sub_element in enumerate(sub_array) if sub_element > 0]
temp2 = [[i , j] for j , sub_element2 in enumerate(sub_array) if sub_element2 == 0]
for z in temp : fixed_coordinates.append(z)
for w in temp2 : empty_coordinates.append(w)
l , m , r = [0 , 3 , 6] , [1 , 4 , 7] , [2 , 5 , 8]
avoid_dict = {idx : [] for idx in list(range(0 , len(empty_coordinates)))}
def generate_bounds(r , c) -> list:
lower_bound_c = c if c in l else c - 1 if c in m else c - 2
upper_bound_c = c + 3 if c in l else c + 2 if c in m else c + 1
lower_bound_r = r if r in l else r - 1 if r in m else r - 2
upper_bound_r = r + 3 if r in l else r + 2 if r in m else r + 1
return [lower_bound_c , upper_bound_c , lower_bound_r , upper_bound_r]
def backtrack(return_coordinates) :
n_r , n_c = empty_coordinates[empty_coordinates.index(return_coordinates) - 1] # getting back element coordinates
while [n_r , n_c] != empty_coordinates[empty_coordinates.index(return_coordinates) + 1]:
if np_problem[n_r , n_c] != 0 :
avoid_dict[empty_coordinates.index([n_r , n_c])].append(np_problem[n_r , n_c])
fix_flag = False
r , c = n_r , n_c
for num in range(1 , 10) :
l_b_c , u_b_c , l_b_r , u_b_r = generate_bounds(r , c)
if all([num not in np_problem[l_b_r : u_b_r , l_b_c : u_b_c] , num not in np_problem[r , :] , num not in np_problem[: , c]]) :
if num not in avoid_dict.get(empty_coordinates.index([n_r , n_c])) :
np_problem[n_r , n_c] , fix_flag = num , True
break
if fix_flag : n_r , n_c = empty_coordinates[empty_coordinates.index([n_r , n_c]) + 1]
if not fix_flag :
np_problem[n_r , n_c] = 0
avoid_dict[empty_coordinates.index([n_r , n_c])].clear()
n_r , n_c = empty_coordinates[empty_coordinates.index([n_r , n_c]) - 1]
for r in range(9) :
for c in range(9) :
if [r , c] not in fixed_coordinates :
fix_flag = False
for num in range(1 , 10) :
l_b_c , u_b_c , l_b_r , u_b_r = generate_bounds(r , c)
if all([num not in np_problem[l_b_r : u_b_r , l_b_c : u_b_c] , num not in np_problem[r , :] , num not in np_problem[: , c]]) :
np_problem[r , c] , fix_flag = num , True
break
if not fix_flag : backtrack([r , c])
print(np_problem)