Merge pull request #178 from PritamP20/master

MiniMaxAlgo added
This commit is contained in:
Agnish Ghosh 2022-10-07 21:17:52 +05:30 committed by GitHub
commit 92b14c34d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 179 additions and 0 deletions

View File

@ -0,0 +1,5 @@
## MiniMax Algorithm
It's implemented in such way that the AI minimizes it's loss and maximizes it's winning chances.
![minimax](https://user-images.githubusercontent.com/92343715/194568346-bc6c78c3-fe22-43b9-ba25-e2f429b1b5e8.png)

View File

@ -0,0 +1,102 @@
import math
import time
from player import HumanPlayer, SmartComputerPlayer
class TicTacToe():
def __init__(self):
self.board = self.make_board()
self.current_winner = None
@staticmethod
def make_board():
return [' ' for _ in range(9)]
def print_board(self):
for row in [self.board[i*3:(i+1) * 3] for i in range(3)]:
print('| ' + ' | '.join(row) + ' |')
@staticmethod
def print_board_nums():
# 0 | 1 | 2
number_board = [[str(i) for i in range(j*3, (j+1)*3)] for j in range(3)]
for row in number_board:
print('| ' + ' | '.join(row) + ' |')
def make_move(self, square, letter):
if self.board[square] == ' ':
self.board[square] = letter
if self.winner(square, letter):
self.current_winner = letter
return True
return False
def winner(self, square, letter):
# check the row
row_ind = math.floor(square / 3)
row = self.board[row_ind*3:(row_ind+1)*3]
# print('row', row)
if all([s == letter for s in row]):
return True
col_ind = square % 3
column = [self.board[col_ind+i*3] for i in range(3)]
# print('col', column)
if all([s == letter for s in column]):
return True
if square % 2 == 0:
diagonal1 = [self.board[i] for i in [0, 4, 8]]
# print('diag1', diagonal1)
if all([s == letter for s in diagonal1]):
return True
diagonal2 = [self.board[i] for i in [2, 4, 6]]
# print('diag2', diagonal2)
if all([s == letter for s in diagonal2]):
return True
return False
def empty_squares(self):
return ' ' in self.board
def num_empty_squares(self):
return self.board.count(' ')
def available_moves(self):
return [i for i, x in enumerate(self.board) if x == " "]
def play(game, x_player, o_player, print_game=True):
if print_game:
game.print_board_nums()
letter = 'X'
while game.empty_squares():
if letter == 'O':
square = o_player.get_move(game)
else:
square = x_player.get_move(game)
if game.make_move(square, letter):
if print_game:
print(letter + ' makes a move to square {}'.format(square))
game.print_board()
print('')
if game.current_winner:
if print_game:
print(letter + ' wins!')
return letter # ends the loop and exits the game
letter = 'O' if letter == 'X' else 'X' # switches player
time.sleep(.8)
if print_game:
print('It\'s a tie!')
if __name__ == '__main__':
x_player = SmartComputerPlayer('X')
o_player = HumanPlayer('O')
t = TicTacToe()
play(t, x_player, o_player, print_game=True)

View File

@ -0,0 +1,72 @@
import math
import random
class Player:
def __init__(self, letter):
self.letter = letter
def get_move(self, game):
pass
class HumanPlayer(Player):
def __init__(self, letter):
super().__init__(letter)
def get_move(self, game):
valid_square = False
val = None
while not valid_square:
square = input(self.letter + '\'s turn. Input move (0-9): ')
try:
val = int(square)
if val not in game.available_moves():
raise ValueError
valid_square = True
except ValueError:
print('Invalid square. Try again.')
return val
class SmartComputerPlayer(Player):
def __init__(self, letter):
super().__init__(letter)
def get_move(self, game):
if len(game.available_moves()) == 9:
square = random.choice(game.available_moves())
else:
square = self.minimax(game, self.letter)['position']
return square
def minimax(self, state, player):
max_player = self.letter # yourself
other_player = 'O' if player == 'X' else 'X'
# first we want to check if the previous move is a winner
if state.current_winner == other_player:
return {'position': None, 'score': 1 * (state.num_empty_squares() + 1) if other_player == max_player else -1 * (
state.num_empty_squares() + 1)}
elif not state.empty_squares():
return {'position': None, 'score': 0}
if player == max_player:
best = {'position': None, 'score': -math.inf} # each score should maximize
else:
best = {'position': None, 'score': math.inf} # each score should minimize
for possible_move in state.available_moves():
state.make_move(possible_move, player)
sim_score = self.minimax(state, other_player) # simulate a game after making that move
# undo move
state.board[possible_move] = ' '
state.current_winner = None
sim_score['position'] = possible_move # this represents the move optimal next move
if player == max_player: # X is max player
if sim_score['score'] > best['score']:
best = sim_score
else:
if sim_score['score'] < best['score']:
best = sim_score
return best