{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "hdd4dapuroBk" }, "source": [ "# Digit Recognition using Random Forest Classifier" ] }, { "cell_type": "markdown", "metadata": { "id": "k_cWcYTUsWdE" }, "source": [ "**Import Basic Library**" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "t6uu8CVZrllI" }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n" ] }, { "cell_type": "markdown", "metadata": { "id": "S_X9qpm0s4uq" }, "source": [ "**Choosing Dataset**" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 73 }, "id": "ERRZ3tkOOYFA", "outputId": "5f8f4aae-398b-4e33-e2c2-53de23174401" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " \n", " Upload widget is only available when the cell has been executed in the\n", " current browser session. Please rerun this cell to enable.\n", " \n", " " ] }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Saving train[1].csv to train[1].csv\n" ] } ], "source": [ "from google.colab import files\n", "uploaded = files.upload()" ] }, { "cell_type": "markdown", "source": [ "**Load Dataset**" ], "metadata": { "id": "TJRApm0w0Dct" } }, { "cell_type": "code", "source": [ "dataset = pd.read_csv('train.csv')" ], "metadata": { "id": "GyOvJOoR0Lhq" }, "execution_count": 4, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Summarize dataset**" ], "metadata": { "id": "0txmydWY0ZEH" } }, { "cell_type": "code", "source": [ "print(dataset.shape)\n", "print(dataset.head(5))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "AW-9ITV10cIY", "outputId": "dce2cb6d-2bdb-41e5-de9e-baf122900140" }, "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "(42000, 785)\n", " label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 \\\n", "0 1 0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 0 0 \n", "2 1 0 0 0 0 0 0 0 0 \n", "3 4 0 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 0 0 \n", "\n", " pixel8 ... pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 \\\n", "0 0 ... 0 0 0 0 0 0 \n", "1 0 ... 0 0 0 0 0 0 \n", "2 0 ... 0 0 0 0 0 0 \n", "3 0 ... 0 0 0 0 0 0 \n", "4 0 ... 0 0 0 0 0 0 \n", "\n", " pixel780 pixel781 pixel782 pixel783 \n", "0 0 0 0 0 \n", "1 0 0 0 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "4 0 0 0 0 \n", "\n", "[5 rows x 785 columns]\n" ] } ] }, { "cell_type": "markdown", "source": [ "**Segregate Dataset into X(Input/Independent Variable) & Y(Output/Dependent Variable)**" ], "metadata": { "id": "QUh5BKq20viv" } }, { "cell_type": "code", "source": [ "X = dataset.iloc[:,1:]\n", "print(X)\n", "print(X.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OP2TX3iX09ND", "outputId": "9c8f44e2-a503-4acf-8978-f6576706e402" }, "execution_count": 6, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n", "0 0 0 0 0 0 0 0 0 0 \n", "1 0 0 0 0 0 0 0 0 0 \n", "2 0 0 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 0 0 \n", "4 0 0 0 0 0 0 0 0 0 \n", "... ... ... ... ... ... ... ... ... ... \n", "41995 0 0 0 0 0 0 0 0 0 \n", "41996 0 0 0 0 0 0 0 0 0 \n", "41997 0 0 0 0 0 0 0 0 0 \n", "41998 0 0 0 0 0 0 0 0 0 \n", "41999 0 0 0 0 0 0 0 0 0 \n", "\n", " pixel9 ... pixel774 pixel775 pixel776 pixel777 pixel778 \\\n", "0 0 ... 0 0 0 0 0 \n", "1 0 ... 0 0 0 0 0 \n", "2 0 ... 0 0 0 0 0 \n", "3 0 ... 0 0 0 0 0 \n", "4 0 ... 0 0 0 0 0 \n", "... ... ... ... ... ... ... ... \n", "41995 0 ... 0 0 0 0 0 \n", "41996 0 ... 0 0 0 0 0 \n", "41997 0 ... 0 0 0 0 0 \n", "41998 0 ... 0 0 0 0 0 \n", "41999 0 ... 0 0 0 0 0 \n", "\n", " pixel779 pixel780 pixel781 pixel782 pixel783 \n", "0 0 0 0 0 0 \n", "1 0 0 0 0 0 \n", "2 0 0 0 0 0 \n", "3 0 0 0 0 0 \n", "4 0 0 0 0 0 \n", "... ... ... ... ... ... \n", "41995 0 0 0 0 0 \n", "41996 0 0 0 0 0 \n", "41997 0 0 0 0 0 \n", "41998 0 0 0 0 0 \n", "41999 0 0 0 0 0 \n", "\n", "[42000 rows x 784 columns]\n", "(42000, 784)\n" ] } ] }, { "cell_type": "code", "source": [ "Y = dataset.iloc[:,0]\n", "print(Y)\n", "print(Y.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2RuBl7671GH4", "outputId": "96d6afef-f2ed-420f-d95c-826a287fa8dd" }, "execution_count": 7, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "0 1\n", "1 0\n", "2 1\n", "3 4\n", "4 0\n", " ..\n", "41995 0\n", "41996 1\n", "41997 7\n", "41998 6\n", "41999 9\n", "Name: label, Length: 42000, dtype: int64\n", "(42000,)\n" ] } ] }, { "cell_type": "markdown", "source": [ "**Splitting Dataset into Test and Train**" ], "metadata": { "id": "o1j-AGZd1OQV" } }, { "cell_type": "code", "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size = 0.25, random_state = 0)" ], "metadata": { "id": "U_c_R4HA1SeZ" }, "execution_count": 8, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Training**" ], "metadata": { "id": "Gf6EgvAc1vjh" } }, { "cell_type": "code", "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "model = RandomForestClassifier()\n", "model.fit(X_train, y_train)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "RS4TAnDh1yUU", "outputId": "4803259d-f3a1-461f-d3d0-939bc4495a64" }, "execution_count": 9, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "RandomForestClassifier()" ] }, "metadata": {}, "execution_count": 9 } ] }, { "cell_type": "code", "source": [ "y_pred = model.predict(X_test)" ], "metadata": { "id": "SljeEEbs2JFT" }, "execution_count": 10, "outputs": [] }, { "cell_type": "markdown", "source": [ "**Model Accuracy**" ], "metadata": { "id": "4XEvHILm2OF-" } }, { "cell_type": "code", "source": [ "from sklearn.metrics import accuracy_score\n", "print(\"Accuracy of the Model: {0}%\".format(accuracy_score(y_test, y_pred)*100))" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "sHEVc1Qq2Rqy", "outputId": "06be6e32-1ba4-4035-eafb-3b3c2023abd6" }, "execution_count": 11, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Accuracy of the Model: 96.31428571428572%\n" ] } ] }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "index=10\n", "print(\"Predicted \" +str(model.predict(X_test)[index]))\n", "plt.axis('off')\n", "plt.imshow(X_test.iloc[index].values.reshape((28,28)),cmap='gray')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 283 }, "id": "iymJ1Zpj20gk", "outputId": "ae21ce24-b957-4a30-8f04-ec5c77dd5a53" }, "execution_count": 13, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Predicted 7\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 13 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAF8UlEQVR4nO3dPWtUaxuG4XdJ4kelJqJVEAuriAja2NhaWSmxs7Ky1UoJCAEhRdKKhWBjIdqJaUQEsRFELNQ/IDaCgqIEP3DtOuyse9zzTjLXTI6j9GKShXLuB/bDzDRt2/4PyLNt2A8ArE+cEEqcEEqcEEqcEGqiGpum8b9yYYO1bdus9+dOTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgglTgg1MewHGEcLCwvl/vPnz85tdXW1fO21a9fKfc+ePeX+58+fch+mGzdudG7z8/Ob+CQZnJwQSpwQSpwQSpwQSpwQSpwQSpwQqmnbtntsmu5xjO3evbvcFxcXy/3ChQvlvn379v/8TH+raZpyr/69h+3Nmzed27FjxzbxSTZX27br/qM5OSGUOCGUOCGUOCGUOCGUOCGUOCHUlrznPHXqVLnfvn273A8dOjTIxxmoUb7n/P79e+fW6+55lLnnhBEjTgglTgglTgglTgglTgglTgg1tp9be+LEic7t0aNH5Wt37do16McZmF6fa/vt27dy/3/uObdtq/9bvm/fvr5/Nv/m5IRQ4oRQ4oRQ4oRQ4oRQ4oRQ4oRQY3vPWX3OafI95srKSrlfv3693F+9ejXAp1lr586d5f748eNyP3nyZLlPTk52brOzs+Vr3759W+6jyMkJocQJocQJocQJocQJocQJocb2KmVubm5ov/v379/lfuvWrc5tfn6+fO3Xr1/7eqZR8OvXr85tHK9KenFyQihxQihxQihxQihxQihxQihxQqixvec8cODAhv3sXh9PefHixXK/d+/eIB9n00xPT5d7r7eE9VLdc25FTk4IJU4IJU4IJU4IJU4IJU4IJU4INbb3nA8ePOjcpqamytfevXu33JeXl8v948eP5T6qqr/TQTh37tyG/vxR4+SEUOKEUOKEUOKEUOKEUOKEUOKEUE3btt1j03SPI2xmZqbc379/v0lPkufgwYOd27t378rX7tixo9w/fPhQ7kePHu3cvnz5Ur52lLVt26z3505OCCVOCCVOCCVOCCVOCCVOCCVOCDW27+esbOV7zF6uXLnSufW6x+zl2bNn5T7Od5n9cHJCKHFCKHFCKHFCKHFCKHFCqC15lTLOJicny31ubq7cL1261Pfv/vHjR7k/efKk75+9FTk5IZQ4IZQ4IZQ4IZQ4IZQ4IZQ4IZR7zjHT655yaWmp3KuPSu1lYWGh3O/cudP3z96KnJwQSpwQSpwQSpwQSpwQSpwQSpwQakt+BeAoO3LkSLk/ffq03Pfu3dv37/78+XO5Hz58uNx99OX6fAUgjBhxQihxQihxQihxQihxQihxQijv5wxz/Pjxcl9ZWSn3qampcu/1fs3V1dXO7fz58+Vr3WMOlpMTQokTQokTQokTQokTQokTQrlKGYKZmZnO7eHDh+Vrp6enB/04aywvL3duvd6OxmA5OSGUOCGUOCGUOCGUOCGUOCGUOCGUe84NMDs7W+5Xr17t3Pbv3z/ox1nj5cuX5b64uLihv5+/5+SEUOKEUOKEUOKEUOKEUOKEUOKEUL4CsA8TE/X18P3798v9zJkzg3ycNT59+lTup0+fLvfXr18P8nH4C74CEEaMOCGUOCGUOCGUOCGUOCGUOCGU93P24ebNm+U+zHvMy5cvl7t7zNHh5IRQ4oRQ4oRQ4oRQ4oRQ4oRQ4oRQ7jn70OtzaTfS2bNny/358+eb9CRsNCcnhBInhBInhBInhBInhBInhHKVEmZpaancX7x4sUlPwrA5OSGUOCGUOCGUOCGUOCGUOCGUOCGUrwCEIfMVgDBixAmhxAmhxAmhxAmhxAmhxAmhyntOYHicnBBKnBBKnBBKnBBKnBBKnBDqH2Wm9vKr3NQPAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ] } ], "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyOBzEe2vR1rQh4B8yWT0mhr", "include_colab_link": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }