import math import random class Player: def __init__(self, letter): self.letter = letter def get_move(self, game): pass class HumanPlayer(Player): def __init__(self, letter): super().__init__(letter) def get_move(self, game): valid_square = False val = None while not valid_square: square = input(self.letter + '\'s turn. Input move (0-9): ') try: val = int(square) if val not in game.available_moves(): raise ValueError valid_square = True except ValueError: print('Invalid square. Try again.') return val class SmartComputerPlayer(Player): def __init__(self, letter): super().__init__(letter) def get_move(self, game): if len(game.available_moves()) == 9: square = random.choice(game.available_moves()) else: square = self.minimax(game, self.letter)['position'] return square def minimax(self, state, player): max_player = self.letter # yourself other_player = 'O' if player == 'X' else 'X' # first we want to check if the previous move is a winner if state.current_winner == other_player: return {'position': None, 'score': 1 * (state.num_empty_squares() + 1) if other_player == max_player else -1 * ( state.num_empty_squares() + 1)} elif not state.empty_squares(): return {'position': None, 'score': 0} if player == max_player: best = {'position': None, 'score': -math.inf} # each score should maximize else: best = {'position': None, 'score': math.inf} # each score should minimize for possible_move in state.available_moves(): state.make_move(possible_move, player) sim_score = self.minimax(state, other_player) # simulate a game after making that move # undo move state.board[possible_move] = ' ' state.current_winner = None sim_score['position'] = possible_move # this represents the move optimal next move if player == max_player: # X is max player if sim_score['score'] > best['score']: best = sim_score else: if sim_score['score'] < best['score']: best = sim_score return best