The function makes a labelled confusion matrix comparing predictions and ground truth labels. If classes is passed, confusion matrix will be labelled, if not, integer class values will be used. Args: * `y_true`: Array of truth labels (must be same shape as y_pred). * `y_pred`: Array of predicted labels (must be same shape as y_true). * `classes`: Array of class labels (e.g. string form). If `None`, integer labels are used. * `figsize`: Size of output figure (default=(10, 10)). * `text_size`: Size of output figure text (default=15). * `norm`: normalize values or not (default=False). * `savefig`: save confusion matrix to file (default=False). Returns: A labelled confusion matrix plot comparing y_true and y_pred. ### Example usage: > """make_confusion_matrix(y_true=test_labels, # ground truth test labels y_pred=y_preds, # predicted labels classes=class_names, # array of class label names figsize=(15, 15), text_size=10)""" #### CODE BY ZeroToMastery TensorFlow course.