python_reference/useful_scripts/sparsify_matrix.py

38 lines
824 B
Python
Raw Normal View History

2014-09-14 17:18:56 +00:00
# Sebastian Raschka 2014
#
# Sparsifying a matrix by Zeroing out all elements but the top k elements in a row.
# The matrix could be a distance or similarity matrix (e.g., kernel matrix in kernel PCA),
# where we are interested to keep the top k neighbors.
2015-02-06 16:58:24 +00:00
import numpy as np
2014-09-14 17:18:56 +00:00
print('Sparsify a matrix by zeroing all elements but the top 2 values in a row.\n')
A = np.array([[1,2,3,4,5],[9,8,6,4,5],[3,1,7,8,9]])
print('Before:\n%s\n' %A)
k = 2 # keep top k neighbors
for row in A:
sort_idx = np.argsort(row)[::-1] # get indexes of sort order (high to low)
for i in sort_idx[k:]:
row[i]=0
print('After:\n%s\n' %A)
"""
Sparsify a matrix by zeroing all elements but the top 2 values in a row.
Before:
[[1 2 3 4 5]
[9 8 6 4 5]
[3 1 7 8 9]]
After:
[[0 0 0 4 5]
[9 8 0 0 0]
[0 0 0 8 9]]
"""