Updating Columns update

This commit is contained in:
rasbt 2015-01-24 15:18:17 -05:00
parent f681bd6e5d
commit c68623a5aa

View File

@ -1,7 +1,7 @@
{
"metadata": {
"name": "",
"signature": "sha256:1ba931b3466a0506e031f8b9bdffcb2ba39138b42f3676b74376988bf095be97"
"signature": "sha256:d1e515a46e85e308d5673229e5a6f87c3db1d616a30cee44a09e0af3e088e19c"
},
"nbformat": 3,
"nbformat_minor": 0,
@ -84,13 +84,18 @@
"source": [
"- [Loading Some Example Data](#Loading-Some-Example-Data)\n",
"- [Renaming Columns](#Renaming-Columns)\n",
" - [Converting Column Names to Lowercase](#Converting-Column-Names-to-Lowercase)\n",
" - [Renaming Particular Columns](#Renaming-Particular-Columns)\n",
"- [Applying Computations Rows-wise](#Applying-Computations-Rows-wise)\n",
" - [Changing Values in a Column](#Changing-Values-in-a-Column)\n",
" - [Adding a New Column](#Adding-a-New-Column)\n",
"- [Missing Values aka NaNs](#Missing-Values-aka-NaNs)\n",
" - [Selecting NaN Rows](#Selecting-NaN-Rows)\n",
" - [Dropping NaN Rows](#Dropping-NaN-Rows)\n",
" - [Selecting non-NaN Rows](#Selecting-non-NaN-Rows)\n",
" - [Filling NaN Rows](#Filling-NaN-Rows)\n",
"- [Appending Rows to a DataFrame](#Appending-Rows-to-a-DataFrame)\n",
"- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)"
"- [Sorting and Reindexing DataFrames](#Sorting-and-Reindexing-DataFrames)\n",
"- [Updating Columns](#Updating-Columns)"
]
},
{
@ -322,6 +327,22 @@
"[[back to section overview](#Sections)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Converting Column Names to Lowercase"
]
},
{
"cell_type": "code",
"collapsed": false,
@ -333,7 +354,7 @@
"# or\n",
"# df.rename(columns=lambda x : x.lower())\n",
"\n",
"df.tail()"
"df.tail(3)"
],
"language": "python",
"metadata": {},
@ -357,28 +378,6 @@
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5</th>\n",
" <td> Santiago Cazorla\\n Midfield \u2014 Arsenal</td>\n",
" <td> $14.8m</td>\n",
" <td> 20</td>\n",
" <td> 4</td>\n",
" <td>NaN</td>\n",
" <td> 20</td>\n",
" <td> 9.97</td>\n",
" <td> NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td> David Silva\\n Midfield \u2014 Manchester City</td>\n",
" <td> $14.3m</td>\n",
" <td> 15</td>\n",
" <td> 6</td>\n",
" <td> 2</td>\n",
" <td> 11</td>\n",
" <td> 10.35</td>\n",
" <td> 155.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td> Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea</td>\n",
" <td> $14.0m</td>\n",
@ -420,15 +419,11 @@
"prompt_number": 3,
"text": [
" player salary gp g a sot ppg \\\n",
"5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN 20 9.97 \n",
"6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 11 10.35 \n",
"7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 10 10.47 \n",
"8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 20 7.02 \n",
"9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 11 7.50 \n",
"\n",
" p \n",
"5 NaN \n",
"6 155.26 \n",
"7 209.49 \n",
"8 147.43 \n",
"9 150.01 "
@ -437,12 +432,26 @@
],
"prompt_number": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Renaming Particular Columns"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Renaming particular columns\n",
"\n",
"df = df.rename(columns={'p': 'points', \n",
" 'gp': 'games',\n",
" 'sot': 'shots_on_target',\n",
@ -450,7 +459,7 @@
" 'ppg': 'points_per_game',\n",
" 'a': 'assists',})\n",
"\n",
"df.tail()"
"df.tail(3)"
],
"language": "python",
"metadata": {},
@ -474,28 +483,6 @@
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5</th>\n",
" <td> Santiago Cazorla\\n Midfield \u2014 Arsenal</td>\n",
" <td> $14.8m</td>\n",
" <td> 20</td>\n",
" <td> 4</td>\n",
" <td>NaN</td>\n",
" <td> 20</td>\n",
" <td> 9.97</td>\n",
" <td> NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td> David Silva\\n Midfield \u2014 Manchester City</td>\n",
" <td> $14.3m</td>\n",
" <td> 15</td>\n",
" <td> 6</td>\n",
" <td> 2</td>\n",
" <td> 11</td>\n",
" <td> 10.35</td>\n",
" <td> 155.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td> Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea</td>\n",
" <td> $14.0m</td>\n",
@ -537,15 +524,11 @@
"prompt_number": 4,
"text": [
" player salary games goals assists \\\n",
"5 Santiago Cazorla\\n Midfield \u2014 Arsenal $14.8m 20 4 NaN \n",
"6 David Silva\\n Midfield \u2014 Manchester City $14.3m 15 6 2 \n",
"7 Cesc F\u00e0bregas\\n Midfield \u2014 Chelsea $14.0m 20 2 14 \n",
"8 Saido Berahino\\n Forward \u2014 West Brom $13.8m 21 9 0 \n",
"9 Steven Gerrard\\n Midfield \u2014 Liverpool $13.8m 20 5 1 \n",
"\n",
" shots_on_target points_per_game points \n",
"5 20 9.97 NaN \n",
"6 11 10.35 155.26 \n",
"7 10 10.47 209.49 \n",
"8 20 7.02 147.43 \n",
"9 11 7.50 150.01 "
@ -577,6 +560,22 @@
"[[back to section overview](#Sections)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Changing Values in a Column"
]
},
{
"cell_type": "code",
"collapsed": false,
@ -688,12 +687,26 @@
],
"prompt_number": 5
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Adding a New Column"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Creating a new column\n",
"\n",
"df['team'] = pd.Series('', index=df.index)\n",
"\n",
"# or\n",
@ -794,9 +807,10 @@
"\n",
"for idx,row in df.iterrows():\n",
" name, position, team = process_player_col(row['player'])\n",
"\n",
" df.ix[idx, 'player'], df.ix[idx, 'position'], df.ix[idx, 'team'] = name, position, team\n",
" \n",
"df.tail()"
"df.tail(3)"
],
"language": "python",
"metadata": {},
@ -822,32 +836,6 @@
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5</th>\n",
" <td> Santiago Cazorla</td>\n",
" <td> 14.8</td>\n",
" <td> 20</td>\n",
" <td> 4</td>\n",
" <td>NaN</td>\n",
" <td> 20</td>\n",
" <td> 9.97</td>\n",
" <td> NaN</td>\n",
" <td> Arsenal</td>\n",
" <td> Midfield</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td> David Silva</td>\n",
" <td> 14.3</td>\n",
" <td> 15</td>\n",
" <td> 6</td>\n",
" <td> 2</td>\n",
" <td> 11</td>\n",
" <td> 10.35</td>\n",
" <td> 155.26</td>\n",
" <td> Manchester City</td>\n",
" <td> Midfield</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td> Cesc F\u00e0bregas</td>\n",
" <td> 14.0</td>\n",
@ -895,15 +883,11 @@
"prompt_number": 7,
"text": [
" player salary games goals assists shots_on_target \\\n",
"5 Santiago Cazorla 14.8 20 4 NaN 20 \n",
"6 David Silva 14.3 15 6 2 11 \n",
"7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n",
"8 Saido Berahino 13.8 21 9 0 20 \n",
"9 Steven Gerrard 13.8 20 5 1 11 \n",
"\n",
" points_per_game points team position \n",
"5 9.97 NaN Arsenal Midfield \n",
"6 10.35 155.26 Manchester City Midfield \n",
"7 10.47 209.49 Chelsea Midfield \n",
"8 7.02 147.43 West Brom Forward \n",
"9 7.50 150.01 Liverpool Midfield "
@ -945,25 +929,19 @@
},
{
"cell_type": "heading",
"level": 2,
"level": 3,
"metadata": {},
"source": [
"Selecting NaN Rows"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[[back to section overview](#Sections)]"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Selecting all rows that have NaNs in the `assists` column\n",
"df[~df['assists'].notnull()]"
"\n",
"df[df['assists'].isnull()]"
],
"language": "python",
"metadata": {},
@ -1044,25 +1022,16 @@
},
{
"cell_type": "heading",
"level": 2,
"level": 3,
"metadata": {},
"source": [
"Dropping NaN Rows"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[[back to section overview](#Sections)]"
"Selecting non-NaN Rows"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Dropping all rows that have NaNs in the `assists` column\n",
"\n",
"df[df['assists'].notnull()]"
],
"language": "python",
@ -1234,19 +1203,12 @@
},
{
"cell_type": "heading",
"level": 2,
"level": 3,
"metadata": {},
"source": [
"Filling NaN Rows"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[[back to section overview](#Sections)]"
]
},
{
"cell_type": "code",
"collapsed": false,
@ -1481,7 +1443,7 @@
" index=df.columns), \n",
" ignore_index=True)\n",
"\n",
"df.tail()"
"df.tail(3)"
],
"language": "python",
"metadata": {},
@ -1507,32 +1469,6 @@
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>6 </th>\n",
" <td> David Silva</td>\n",
" <td> 14.3</td>\n",
" <td> 15</td>\n",
" <td> 6</td>\n",
" <td> 2</td>\n",
" <td> 11</td>\n",
" <td> 10.35</td>\n",
" <td> 155.26</td>\n",
" <td> Manchester City</td>\n",
" <td> Midfield</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 </th>\n",
" <td> Cesc F\u00e0bregas</td>\n",
" <td> 14.0</td>\n",
" <td> 20</td>\n",
" <td> 2</td>\n",
" <td> 14</td>\n",
" <td> 10</td>\n",
" <td> 10.47</td>\n",
" <td> 209.49</td>\n",
" <td> Chelsea</td>\n",
" <td> Midfield</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 </th>\n",
" <td> Saido Berahino</td>\n",
" <td> 13.8</td>\n",
@ -1580,15 +1516,11 @@
"prompt_number": 11,
"text": [
" player salary games goals assists shots_on_target \\\n",
"6 David Silva 14.3 15 6 2 11 \n",
"7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n",
"8 Saido Berahino 13.8 21 9 0 20 \n",
"9 Steven Gerrard 13.8 20 5 1 11 \n",
"10 NaN NaN NaN NaN NaN NaN \n",
"\n",
" points_per_game points team position \n",
"6 10.35 155.26 Manchester City Midfield \n",
"7 10.47 209.49 Chelsea Midfield \n",
"8 7.02 147.43 West Brom Forward \n",
"9 7.50 150.01 Liverpool Midfield \n",
"10 NaN NaN NaN NaN "
@ -1605,7 +1537,7 @@
"\n",
"df.loc[df.index[-1], 'player'] = 'New Player'\n",
"df.loc[df.index[-1], 'salary'] = 12.3\n",
"df.tail()"
"df.tail(3)"
],
"language": "python",
"metadata": {},
@ -1631,32 +1563,6 @@
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>6 </th>\n",
" <td> David Silva</td>\n",
" <td> 14.3</td>\n",
" <td> 15</td>\n",
" <td> 6</td>\n",
" <td> 2</td>\n",
" <td> 11</td>\n",
" <td> 10.35</td>\n",
" <td> 155.26</td>\n",
" <td> Manchester City</td>\n",
" <td> Midfield</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7 </th>\n",
" <td> Cesc F\u00e0bregas</td>\n",
" <td> 14.0</td>\n",
" <td> 20</td>\n",
" <td> 2</td>\n",
" <td> 14</td>\n",
" <td> 10</td>\n",
" <td> 10.47</td>\n",
" <td> 209.49</td>\n",
" <td> Chelsea</td>\n",
" <td> Midfield</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8 </th>\n",
" <td> Saido Berahino</td>\n",
" <td> 13.8</td>\n",
@ -1704,15 +1610,11 @@
"prompt_number": 12,
"text": [
" player salary games goals assists shots_on_target \\\n",
"6 David Silva 14.3 15 6 2 11 \n",
"7 Cesc F\u00e0bregas 14.0 20 2 14 10 \n",
"8 Saido Berahino 13.8 21 9 0 20 \n",
"9 Steven Gerrard 13.8 20 5 1 11 \n",
"10 New Player 12.3 NaN NaN NaN NaN \n",
"\n",
" points_per_game points team position \n",
"6 10.35 155.26 Manchester City Midfield \n",
"7 10.47 209.49 Chelsea Midfield \n",
"8 7.02 147.43 West Brom Forward \n",
"9 7.50 150.01 Liverpool Midfield \n",
"10 NaN NaN NaN NaN "
@ -1871,7 +1773,7 @@
"cell_type": "code",
"collapsed": false,
"input": [
"# Reindexing the DataFrame after sorting\n",
"# Optional reindexing of the DataFrame after sorting\n",
"\n",
"df.index = range(1,len(df.index)+1)\n",
"df.head()"
@ -1989,6 +1891,455 @@
}
],
"prompt_number": 14
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Updating Columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[[back to section overview](#Sections)]"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Creating a dummy DataFrame with changes in the `salary` column\n",
"\n",
"df_2 = df.copy()\n",
"df_2.loc[0:2, 'salary'] = [20.0, 15.0]\n",
"df_2.head(3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>player</th>\n",
" <th>salary</th>\n",
" <th>games</th>\n",
" <th>goals</th>\n",
" <th>assists</th>\n",
" <th>shots_on_target</th>\n",
" <th>points_per_game</th>\n",
" <th>points</th>\n",
" <th>team</th>\n",
" <th>position</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> Sergio Ag\u00fcero</td>\n",
" <td> 20</td>\n",
" <td> 16</td>\n",
" <td> 14</td>\n",
" <td> 3</td>\n",
" <td> 34</td>\n",
" <td> 13.12</td>\n",
" <td> 209.98</td>\n",
" <td> Manchester City</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> Alexis S\u00e1nchez</td>\n",
" <td> 15</td>\n",
" <td> 0</td>\n",
" <td> 12</td>\n",
" <td> 7</td>\n",
" <td> 29</td>\n",
" <td> 11.19</td>\n",
" <td> 223.86</td>\n",
" <td> Arsenal</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td> Saido Berahino</td>\n",
" <td> 13.8</td>\n",
" <td> 21</td>\n",
" <td> 9</td>\n",
" <td> 0</td>\n",
" <td> 20</td>\n",
" <td> 7.02</td>\n",
" <td> 147.43</td>\n",
" <td> West Brom</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 15,
"text": [
" player salary games goals assists shots_on_target \\\n",
"1 Sergio Ag\u00fcero 20 16 14 3 34 \n",
"2 Alexis S\u00e1nchez 15 0 12 7 29 \n",
"3 Saido Berahino 13.8 21 9 0 20 \n",
"\n",
" points_per_game points team position \n",
"1 13.12 209.98 Manchester City Forward \n",
"2 11.19 223.86 Arsenal Forward \n",
"3 7.02 147.43 West Brom Forward "
]
}
],
"prompt_number": 15
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Temporarily use the `player` columns as indices to \n",
"# apply the update functions\n",
"\n",
"df.set_index('player', inplace=True)\n",
"df_2.set_index('player', inplace=True)\n",
"df.head(3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>salary</th>\n",
" <th>games</th>\n",
" <th>goals</th>\n",
" <th>assists</th>\n",
" <th>shots_on_target</th>\n",
" <th>points_per_game</th>\n",
" <th>points</th>\n",
" <th>team</th>\n",
" <th>position</th>\n",
" </tr>\n",
" <tr>\n",
" <th>player</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Sergio Ag\u00fcero</th>\n",
" <td> 19.2</td>\n",
" <td> 16</td>\n",
" <td> 14</td>\n",
" <td> 3</td>\n",
" <td> 34</td>\n",
" <td> 13.12</td>\n",
" <td> 209.98</td>\n",
" <td> Manchester City</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Alexis S\u00e1nchez</th>\n",
" <td> 17.6</td>\n",
" <td> 0</td>\n",
" <td> 12</td>\n",
" <td> 7</td>\n",
" <td> 29</td>\n",
" <td> 11.19</td>\n",
" <td> 223.86</td>\n",
" <td> Arsenal</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Saido Berahino</th>\n",
" <td> 13.8</td>\n",
" <td> 21</td>\n",
" <td> 9</td>\n",
" <td> 0</td>\n",
" <td> 20</td>\n",
" <td> 7.02</td>\n",
" <td> 147.43</td>\n",
" <td> West Brom</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 16,
"text": [
" salary games goals assists shots_on_target \\\n",
"player \n",
"Sergio Ag\u00fcero 19.2 16 14 3 34 \n",
"Alexis S\u00e1nchez 17.6 0 12 7 29 \n",
"Saido Berahino 13.8 21 9 0 20 \n",
"\n",
" points_per_game points team position \n",
"player \n",
"Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n",
"Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n",
"Saido Berahino 7.02 147.43 West Brom Forward "
]
}
],
"prompt_number": 16
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Update the `salary` column\n",
"df.update(other=df_2['salary'], overwrite=True)\n",
"df.head(3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>salary</th>\n",
" <th>games</th>\n",
" <th>goals</th>\n",
" <th>assists</th>\n",
" <th>shots_on_target</th>\n",
" <th>points_per_game</th>\n",
" <th>points</th>\n",
" <th>team</th>\n",
" <th>position</th>\n",
" </tr>\n",
" <tr>\n",
" <th>player</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Sergio Ag\u00fcero</th>\n",
" <td> 20</td>\n",
" <td> 16</td>\n",
" <td> 14</td>\n",
" <td> 3</td>\n",
" <td> 34</td>\n",
" <td> 13.12</td>\n",
" <td> 209.98</td>\n",
" <td> Manchester City</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Alexis S\u00e1nchez</th>\n",
" <td> 15</td>\n",
" <td> 0</td>\n",
" <td> 12</td>\n",
" <td> 7</td>\n",
" <td> 29</td>\n",
" <td> 11.19</td>\n",
" <td> 223.86</td>\n",
" <td> Arsenal</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Saido Berahino</th>\n",
" <td> 13.8</td>\n",
" <td> 21</td>\n",
" <td> 9</td>\n",
" <td> 0</td>\n",
" <td> 20</td>\n",
" <td> 7.02</td>\n",
" <td> 147.43</td>\n",
" <td> West Brom</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 17,
"text": [
" salary games goals assists shots_on_target \\\n",
"player \n",
"Sergio Ag\u00fcero 20 16 14 3 34 \n",
"Alexis S\u00e1nchez 15 0 12 7 29 \n",
"Saido Berahino 13.8 21 9 0 20 \n",
"\n",
" points_per_game points team position \n",
"player \n",
"Sergio Ag\u00fcero 13.12 209.98 Manchester City Forward \n",
"Alexis S\u00e1nchez 11.19 223.86 Arsenal Forward \n",
"Saido Berahino 7.02 147.43 West Brom Forward "
]
}
],
"prompt_number": 17
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<br>\n",
"<br>"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Reset the indices\n",
"df.reset_index(inplace=True)\n",
"df.head(3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"html": [
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>player</th>\n",
" <th>salary</th>\n",
" <th>games</th>\n",
" <th>goals</th>\n",
" <th>assists</th>\n",
" <th>shots_on_target</th>\n",
" <th>points_per_game</th>\n",
" <th>points</th>\n",
" <th>team</th>\n",
" <th>position</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td> Sergio Ag\u00fcero</td>\n",
" <td> 20</td>\n",
" <td> 16</td>\n",
" <td> 14</td>\n",
" <td> 3</td>\n",
" <td> 34</td>\n",
" <td> 13.12</td>\n",
" <td> 209.98</td>\n",
" <td> Manchester City</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td> Alexis S\u00e1nchez</td>\n",
" <td> 15</td>\n",
" <td> 0</td>\n",
" <td> 12</td>\n",
" <td> 7</td>\n",
" <td> 29</td>\n",
" <td> 11.19</td>\n",
" <td> 223.86</td>\n",
" <td> Arsenal</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td> Saido Berahino</td>\n",
" <td> 13.8</td>\n",
" <td> 21</td>\n",
" <td> 9</td>\n",
" <td> 0</td>\n",
" <td> 20</td>\n",
" <td> 7.02</td>\n",
" <td> 147.43</td>\n",
" <td> West Brom</td>\n",
" <td> Forward</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"metadata": {},
"output_type": "pyout",
"prompt_number": 18,
"text": [
" player salary games goals assists shots_on_target \\\n",
"0 Sergio Ag\u00fcero 20 16 14 3 34 \n",
"1 Alexis S\u00e1nchez 15 0 12 7 29 \n",
"2 Saido Berahino 13.8 21 9 0 20 \n",
"\n",
" points_per_game points team position \n",
"0 13.12 209.98 Manchester City Forward \n",
"1 11.19 223.86 Arsenal Forward \n",
"2 7.02 147.43 West Brom Forward "
]
}
],
"prompt_number": 18
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 18
}
],
"metadata": {}