mirror of
https://github.com/rasbt/python_reference.git
synced 2025-01-18 07:17:06 +00:00
row slice benchmark
This commit is contained in:
parent
fe21bc4838
commit
cabe3a8c55
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:9e62469f6250ac6d58e6d3d2c67a5995d1505778b147ae918d71f4ebc1c12fb6"
|
||||
"signature": "sha256:8294645ddf3a6997a4764ca0bb61458953a6e579d858ecbf59e69882af05d0df"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
|
@ -65,7 +65,8 @@
|
|||
"- [Dictionary operations](#dict_ops) \n",
|
||||
" - [Adding elements to a dictionary](#adding_dict_elements)\n",
|
||||
"- [Comprehensions vs. for-loops](#comprehensions)\n",
|
||||
"- [Copying files by searching directory trees](#find_copy)"
|
||||
"- [Copying files by searching directory trees](#find_copy)\n",
|
||||
"- [Returning column vectors slicing through a numpy array](#row_vectors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1409,14 +1410,6 @@
|
|||
],
|
||||
"prompt_number": 35
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
@ -1424,6 +1417,241 @@
|
|||
"I have to say that I am really positively surprised. The shell's `find` scales even better than expected!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<br>\n",
|
||||
"<br>\n",
|
||||
"<a name='row_vectors'></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Returning column vectors slicing through a numpy array"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Given a numpy matrix, I want to iterate through it and return each column as a 1-column vector. \n",
|
||||
"E.g., if I want to return the 1st column from matrix A below\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
"A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])\n",
|
||||
">>> A\n",
|
||||
"array([[1, 2, 3],\n",
|
||||
" [4, 5, 6],\n",
|
||||
" [7, 8, 9]])</pre>\n",
|
||||
"\n",
|
||||
"I want my result to be:\n",
|
||||
"<pre>\n",
|
||||
"array([[1],\n",
|
||||
" [4],\n",
|
||||
" [7]])</pre>\n",
|
||||
"\n",
|
||||
"with `.shape` = `(3,1)`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"However, the default behavior of numpy is to return the column as a row vector:\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
">>> A[:,0]\n",
|
||||
"array([1, 4, 7])\n",
|
||||
">>> A[:,0].shape\n",
|
||||
"(3,)\n",
|
||||
"</pre>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"def colvec_method1(A):\n",
|
||||
" for col in A.T:\n",
|
||||
" colvec = row[:,np.newaxis]\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 83
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method2(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = A[:,idx:idx+1]\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 82
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method3(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = A[:,idx].reshape(A.shape[0],1)\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 81
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method4(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = np.vstack(A[:,idx])\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 79
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method5(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = np.row_stack(A[:,idx])\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 77
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method6(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = np.column_stack((A[:,idx],))\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 74
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def test_method(method, A):\n",
|
||||
" for i in method(A): \n",
|
||||
" assert i.shape == (A.shape[0],1), \"{}, {}\".format(i.shape, A.shape[0],1)"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 69
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import timeit\n",
|
||||
"\n",
|
||||
"A = np.random.random((300, 3))\n",
|
||||
"\n",
|
||||
"for method in [\n",
|
||||
" colvec_method1, colvec_method2, \n",
|
||||
" colvec_method3, colvec_method4, \n",
|
||||
" colvec_method5, colvec_method6]:\n",
|
||||
" print('\\nTest:', method.__name__)\n",
|
||||
" %timeit test_method(colvec_method2, A)"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"Test: colvec_method1\n",
|
||||
"100000 loops, best of 3: 17.7 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method2\n",
|
||||
"10000 loops, best of 3: 16.4 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method3\n",
|
||||
"100000 loops, best of 3: 17.3 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method4\n",
|
||||
"10000 loops, best of 3: 16.4 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method5\n",
|
||||
"100000 loops, best of 3: 17.1 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method6\n",
|
||||
"100000 loops, best of 3: 16.6 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 86
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:9e62469f6250ac6d58e6d3d2c67a5995d1505778b147ae918d71f4ebc1c12fb6"
|
||||
"signature": "sha256:8294645ddf3a6997a4764ca0bb61458953a6e579d858ecbf59e69882af05d0df"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
|
@ -65,7 +65,8 @@
|
|||
"- [Dictionary operations](#dict_ops) \n",
|
||||
" - [Adding elements to a dictionary](#adding_dict_elements)\n",
|
||||
"- [Comprehensions vs. for-loops](#comprehensions)\n",
|
||||
"- [Copying files by searching directory trees](#find_copy)"
|
||||
"- [Copying files by searching directory trees](#find_copy)\n",
|
||||
"- [Returning column vectors slicing through a numpy array](#row_vectors)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1409,14 +1410,6 @@
|
|||
],
|
||||
"prompt_number": 35
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
|
@ -1424,6 +1417,241 @@
|
|||
"I have to say that I am really positively surprised. The shell's `find` scales even better than expected!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<br>\n",
|
||||
"<br>\n",
|
||||
"<a name='row_vectors'></a>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Returning column vectors slicing through a numpy array"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Given a numpy matrix, I want to iterate through it and return each column as a 1-column vector. \n",
|
||||
"E.g., if I want to return the 1st column from matrix A below\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
"A = np.array([ [1,2,3], [4,5,6], [7,8,9] ])\n",
|
||||
">>> A\n",
|
||||
"array([[1, 2, 3],\n",
|
||||
" [4, 5, 6],\n",
|
||||
" [7, 8, 9]])</pre>\n",
|
||||
"\n",
|
||||
"I want my result to be:\n",
|
||||
"<pre>\n",
|
||||
"array([[1],\n",
|
||||
" [4],\n",
|
||||
" [7]])</pre>\n",
|
||||
"\n",
|
||||
"with `.shape` = `(3,1)`\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"However, the default behavior of numpy is to return the column as a row vector:\n",
|
||||
"\n",
|
||||
"<pre>\n",
|
||||
">>> A[:,0]\n",
|
||||
"array([1, 4, 7])\n",
|
||||
">>> A[:,0].shape\n",
|
||||
"(3,)\n",
|
||||
"</pre>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"def colvec_method1(A):\n",
|
||||
" for col in A.T:\n",
|
||||
" colvec = row[:,np.newaxis]\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 83
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method2(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = A[:,idx:idx+1]\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 82
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method3(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = A[:,idx].reshape(A.shape[0],1)\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 81
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method4(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = np.vstack(A[:,idx])\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 79
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method5(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = np.row_stack(A[:,idx])\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 77
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def colvec_method6(A):\n",
|
||||
" for idx in range(A.shape[1]):\n",
|
||||
" colvec = np.column_stack((A[:,idx],))\n",
|
||||
" yield colvec"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 74
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"def test_method(method, A):\n",
|
||||
" for i in method(A): \n",
|
||||
" assert i.shape == (A.shape[0],1), \"{}, {}\".format(i.shape, A.shape[0],1)"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"prompt_number": 69
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import timeit\n",
|
||||
"\n",
|
||||
"A = np.random.random((300, 3))\n",
|
||||
"\n",
|
||||
"for method in [\n",
|
||||
" colvec_method1, colvec_method2, \n",
|
||||
" colvec_method3, colvec_method4, \n",
|
||||
" colvec_method5, colvec_method6]:\n",
|
||||
" print('\\nTest:', method.__name__)\n",
|
||||
" %timeit test_method(colvec_method2, A)"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"Test: colvec_method1\n",
|
||||
"100000 loops, best of 3: 17.7 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method2\n",
|
||||
"10000 loops, best of 3: 16.4 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method3\n",
|
||||
"100000 loops, best of 3: 17.3 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method4\n",
|
||||
"10000 loops, best of 3: 16.4 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method5\n",
|
||||
"100000 loops, best of 3: 17.1 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n",
|
||||
"\n",
|
||||
"Test: colvec_method6\n",
|
||||
"100000 loops, best of 3: 16.6 \u00b5s per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 86
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
|
|
Loading…
Reference in New Issue
Block a user