mirror of
https://github.com/rasbt/python_reference.git
synced 2025-01-30 05:03:46 +00:00
numpy test
This commit is contained in:
parent
191ff49ab7
commit
eb35644f7b
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:ab74fdc9e8ae58388d1fc428599abc86a3d03938d0f51769cef38ab4028d516a"
|
||||
"signature": "sha256:d5895f75b2ac58db150d7b521682366a447ffb2fb0b7db7e551edd40e6d1ab10"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
|
@ -66,7 +66,8 @@
|
|||
" - [Adding elements to a dictionary](#adding_dict_elements)\n",
|
||||
"- [Comprehensions vs. for-loops](#comprehensions)\n",
|
||||
"- [Copying files by searching directory trees](#find_copy)\n",
|
||||
"- [Returning column vectors slicing through a numpy array](#row_vectors)"
|
||||
"- [Returning column vectors slicing through a numpy array](#row_vectors)\n",
|
||||
"- [Speed of numpy functions vs Python built-ins and std. lib.](#numpy)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1691,6 +1692,116 @@
|
|||
],
|
||||
"prompt_number": 91
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a name='numpy'></a>\n",
|
||||
"<br>\n",
|
||||
"<br>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Speed of numpy functions vs Python built-ins and std. lib."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import numpy as np\n",
|
||||
"import timeit\n",
|
||||
"\n",
|
||||
"samples = list(range(1000000))\n",
|
||||
"\n",
|
||||
"%timeit(sum(samples))\n",
|
||||
"%timeit(np.sum(samples))"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"100 loops, best of 3: 18.3 ms per loop\n",
|
||||
"10 loops, best of 3: 136 ms per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 6
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"%timeit(list(range(1000000)))\n",
|
||||
"%timeit(np.arange(1000000))\n",
|
||||
"\n",
|
||||
"# note that in Python range() is implemented as xrange()\n",
|
||||
"# with lazy evaluation (generator)"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"10 loops, best of 3: 82.6 ms per loop\n",
|
||||
"100 loops, best of 3: 5.35 ms per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 11
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import statistics\n",
|
||||
"\n",
|
||||
"%timeit(statistics.mean(samples))\n",
|
||||
"%timeit(np.mean(samples))"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"1 loops, best of 3: 1.14 s per loop\n",
|
||||
"10 loops, best of 3: 141 ms per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 14
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"metadata": {
|
||||
"name": "",
|
||||
"signature": "sha256:ab74fdc9e8ae58388d1fc428599abc86a3d03938d0f51769cef38ab4028d516a"
|
||||
"signature": "sha256:d5895f75b2ac58db150d7b521682366a447ffb2fb0b7db7e551edd40e6d1ab10"
|
||||
},
|
||||
"nbformat": 3,
|
||||
"nbformat_minor": 0,
|
||||
|
@ -66,7 +66,8 @@
|
|||
" - [Adding elements to a dictionary](#adding_dict_elements)\n",
|
||||
"- [Comprehensions vs. for-loops](#comprehensions)\n",
|
||||
"- [Copying files by searching directory trees](#find_copy)\n",
|
||||
"- [Returning column vectors slicing through a numpy array](#row_vectors)"
|
||||
"- [Returning column vectors slicing through a numpy array](#row_vectors)\n",
|
||||
"- [Speed of numpy functions vs Python built-ins and std. lib.](#numpy)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1691,6 +1692,116 @@
|
|||
],
|
||||
"prompt_number": 91
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<a name='numpy'></a>\n",
|
||||
"<br>\n",
|
||||
"<br>\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Speed of numpy functions vs Python built-ins and std. lib."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import numpy as np\n",
|
||||
"import timeit\n",
|
||||
"\n",
|
||||
"samples = list(range(1000000))\n",
|
||||
"\n",
|
||||
"%timeit(sum(samples))\n",
|
||||
"%timeit(np.sum(samples))"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"100 loops, best of 3: 18.3 ms per loop\n",
|
||||
"10 loops, best of 3: 136 ms per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 6
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"%timeit(list(range(1000000)))\n",
|
||||
"%timeit(np.arange(1000000))\n",
|
||||
"\n",
|
||||
"# note that in Python range() is implemented as xrange()\n",
|
||||
"# with lazy evaluation (generator)"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"10 loops, best of 3: 82.6 ms per loop\n",
|
||||
"100 loops, best of 3: 5.35 ms per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 11
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
"input": [
|
||||
"import statistics\n",
|
||||
"\n",
|
||||
"%timeit(statistics.mean(samples))\n",
|
||||
"%timeit(np.mean(samples))"
|
||||
],
|
||||
"language": "python",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"1 loops, best of 3: 1.14 s per loop\n",
|
||||
"10 loops, best of 3: 141 ms per loop"
|
||||
]
|
||||
},
|
||||
{
|
||||
"output_type": "stream",
|
||||
"stream": "stdout",
|
||||
"text": [
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"prompt_number": 14
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"collapsed": false,
|
||||
|
|
Loading…
Reference in New Issue
Block a user