python patterns

This commit is contained in:
rasbt 2014-08-19 23:14:00 -04:00
parent bdd74ca15c
commit f0b01ab5db

View File

@ -140,9 +140,9 @@
- [watermark](https://github.com/rasbt/watermark) - An IPython magic extension for printing date and time stamps, version numbers, and hardware information.
- [Shell script](./useful_scripts/prepend_python_shebang.sh) for prepending Python-shebangs to .py files.
- [Shell script](./useful_scripts/prepend_python_shebang.sh) For prepending Python-shebangs to .py files.
- convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb)]
- Convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb)]
- A random string generator [function](./useful_scripts/random_string_generator.py)
@ -156,50 +156,56 @@
- [PyPI - the Python Package Index](https://pypi.python.org/pypi) - the official repository for all open source Python modules and packages
- [PyPI - the Python Package Index](https://pypi.python.org/pypi) - The official repository for all open source Python modules and packages.
- [PEP 8](http://legacy.python.org/dev/peps/pep-0008/) - The official style guide for Python code
- [PEP 8](http://legacy.python.org/dev/peps/pep-0008/) - The official style guide for Python code.
<br>
**// News**
- [Python subreddit](http://www.reddit.com/r/Python/) - my favorite resource to catch up with Python news and great Python-related articles
- [Python subreddit](http://www.reddit.com/r/Python/) - My favorite resource to catch up with Python news and great Python-related articles.
- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - a nice and friendly community to share and discuss everything about Python
- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - A nice and friendly community to share and discuss everything about Python.
- [Python Weekly](http://www.pythonweekly.com) - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python
- [Python Weekly](http://www.pythonweekly.com) - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python.
<br>
**// Resources for learning Python**
- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - one of the most popular and recommended resources for learning Python
- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - The popular and probably most recommended resource for learning Python.
- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - a free Python book for experienced programmers
- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - A free Python book for experienced programmers.
- [The Hitchhikers Guide to Python](http://docs.python-guide.org/en/latest/) - a free best-practice handbook for both novices and experts
- [The Hitchhikers Guide to Python](http://docs.python-guide.org/en/latest/) - A free best-practice handbook for both novices and experts.
- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - an introduction for beginners starting with basic concepts of programming
- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - An introduction for beginners starting with basic concepts of programming.
- [Python Patterns](http://matthiaseisen.com/pp/topics/t003/) - A directory of proven, reusable solutions to common programming problems.
<br>
**// My favorite Python projects and packages**
- [The IPython Notebook](http://ipython.org/notebook.html) - an interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document.
- [The IPython Notebook](http://ipython.org/notebook.html) - An interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document.
- [matplotlib](http://matplotlib.org) - Python's favorite plotting library
- [matplotlib](http://matplotlib.org) - Python's favorite plotting library.
- [NumPy](http://www.numpy.org) - a library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays
- [NumPy](http://www.numpy.org) - A library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- [SciPy](http://www.scipy.org) - a library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ...
- [SciPy](http://www.scipy.org) - A library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ...
- [pandas](http://pandas.pydata.org) - high-performance, easy-to-use data structures and data analysis tools build on top of Numpy
- [pandas](http://pandas.pydata.org) - High-performance, easy-to-use data structures and data analysis tools build on top of NumPy.
- [Cython](http://cython.org) - C-extensions for Python, an optimizing static compiler to combine Python and C code
- [Cython](http://cython.org) - C-extensions for Python, an optimizing static compiler to combine Python and C code.
- [Numba](http://numba.pydata.org) - an just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators)
- [Numba](http://numba.pydata.org) - A just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators)
- [scikit-learn](http://scikit-learn.org/stable/) - a powerful machine learning library for Python and tools for efficient data mining and analysis
- [scikit-learn](http://scikit-learn.org/stable/) - A powerful machine learning library for Python and tools for efficient data mining and analysis.