{
"metadata": {
"name": "",
"signature": "sha256:b2597ea4263c11dd6774b227e7a3a5626197c4863e6895002657fd55d02b55d9"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[[back to python_reference](https://github.com/rasbt/python_reference)]"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%load_ext watermark"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%watermark -v -p numpy -d -u"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Last updated: 31/07/2014 \n",
"\n",
"CPython 3.4.1\n",
"IPython 2.1.0\n",
"\n",
"numpy 1.8.1\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[More information](https://github.com/rasbt/watermark) about the `watermark` magic command extension."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"
"
]
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Quick guide for dealing with missing numbers in NumPy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is just a quick overview of how to deal with missing values (i.e., \"NaN\"s for \"Not-a-Number\") in NumPy and I am happy to expand it over time. Yes, and there will also be a separate one for pandas some time!\n",
"\n",
"I would be happy to hear your comments and suggestions. \n",
"Please feel free to drop me a note via\n",
"[twitter](https://twitter.com/rasbt), [email](mailto:bluewoodtree@gmail.com), or [google+](https://plus.google.com/+SebastianRaschka).\n",
"