# This is a workaround snippet for reading very large CSV that exceed the # machine's memory and dump it into an SQLite database using pandas. # # Sebastian Raschka, 2015 # # Tested in Python 3.4.2 and pandas 0.15.2 import pandas as pd import sqlite3 from pandas.io import sql import subprocess # In and output file paths in_csv = '../data/my_large.csv' out_sqlite = '../data/my.sqlite' table_name = 'my_table' # name for the SQLite database table chunksize = 100000 # number of lines to process at each iteration # columns that should be read from the CSV file columns = ['molecule_id','charge','db','drugsnow','hba','hbd','loc','nrb','smiles'] # Get number of lines in the CSV file nlines = subprocess.check_output(['wc', '-l', in_csv]) nlines = int(nlines.split()[0]) # connect to database cnx = sqlite3.connect(out_sqlite) # Iteratively read CSV and dump lines into the SQLite table for i in range(0, nlines, chunksize): # change 0 -> 1 if your csv file contains a column header df = pd.read_csv(in_csv, header=None, # no header, define column header manually later nrows=chunksize, # number of rows to read at each iteration skiprows=i) # skip rows that were already read # columns to read df.columns = columns sql.to_sql(df, name=table_name, con=cnx, index=False, # don't use CSV file index index_label='molecule_id', # use a unique column from DataFrame as index if_exists='append') cnx.close()