# Select a principal eigenvector via NumPy # to be used as a template (copy & paste) script import numpy as np # set A to be your matrix A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) eig_vals, eig_vecs = np.linalg.eig(A) idx = np.absolute(eig_vals).argsort()[::-1] # decreasing order sorted_eig_vals = eig_vals[idx] sorted_eig_vecs = eig_vecs[:, idx] principal_eig_vec = sorted_eig_vecs[:, 0] # eigvec with largest eigval normalized_pr_eig_vec = np.real(principal_eig_vec / np.sum(principal_eig_vec)) print(normalized_pr_eig_vec) # eigvec that sums up to one