# numpy matrix operations # sr 12/01/2013 import numpy ary1 = numpy.array([1,2,3,4,5]) # must be same type ary2 = numpy.zeros((3,4)) # 3x4 matrix consisiting of 0s ary3 = numpy.ones((3,4)) # 3x4 matrix consisiting of 1s ary4 = numpy.identity(3) # 3x3 identity matrix ary5 = ary1.copy() # make a copy of ary1 item1 = ary3[0, 0] # item in row1, column1 ary2.shape # tuple of dimensions. Here: (3,4) ary2.size # number of elements. Here: 12 ary2_t = ary2.transpose() # transposes matrix ary2.ravel() # makes an array linear (1-dimensional) # by concatenating rows ary2.reshape(2,6) # reshapes array (must have same dimensions) ary3[0:2, 0:3] # submatrix of first 2 rows and first 3 columns ary3 = ary3[[2,0,1]] # re-arrange rows # element-wise operations ary1 + ary1 ary1 * ary1 numpy.dot(ary1, ary1) # matrix/vector (dot) product numpy.sum(ary1) # sums up all elements in the array numpy.mean(ary1) # average of all elements in the array