2020-05-20 21:25:48 +00:00
|
|
|
"""
|
|
|
|
https://en.wikipedia.org/wiki/Best-first_search#Greedy_BFS
|
|
|
|
"""
|
|
|
|
|
2020-09-23 11:30:13 +00:00
|
|
|
from __future__ import annotations
|
2020-05-20 21:25:48 +00:00
|
|
|
|
2021-07-27 11:21:00 +00:00
|
|
|
Path = list[tuple[int, int]]
|
|
|
|
|
2020-05-20 21:25:48 +00:00
|
|
|
grid = [
|
|
|
|
[0, 0, 0, 0, 0, 0, 0],
|
|
|
|
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
|
|
|
|
[0, 0, 0, 0, 0, 0, 0],
|
|
|
|
[0, 0, 1, 0, 0, 0, 0],
|
|
|
|
[1, 0, 1, 0, 0, 0, 0],
|
|
|
|
[0, 0, 0, 0, 0, 0, 0],
|
|
|
|
[0, 0, 0, 0, 1, 0, 0],
|
|
|
|
]
|
|
|
|
|
|
|
|
delta = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
|
|
|
|
|
|
|
|
|
|
|
|
class Node:
|
|
|
|
"""
|
|
|
|
>>> k = Node(0, 0, 4, 5, 0, None)
|
|
|
|
>>> k.calculate_heuristic()
|
|
|
|
9
|
|
|
|
>>> n = Node(1, 4, 3, 4, 2, None)
|
|
|
|
>>> n.calculate_heuristic()
|
|
|
|
2
|
|
|
|
>>> l = [k, n]
|
|
|
|
>>> n == l[0]
|
|
|
|
False
|
|
|
|
>>> l.sort()
|
|
|
|
>>> n == l[0]
|
|
|
|
True
|
|
|
|
"""
|
|
|
|
|
2021-07-27 11:21:00 +00:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
pos_x: int,
|
|
|
|
pos_y: int,
|
|
|
|
goal_x: int,
|
|
|
|
goal_y: int,
|
|
|
|
g_cost: float,
|
2021-09-07 11:37:03 +00:00
|
|
|
parent: Node | None,
|
2021-07-27 11:21:00 +00:00
|
|
|
):
|
2020-05-20 21:25:48 +00:00
|
|
|
self.pos_x = pos_x
|
|
|
|
self.pos_y = pos_y
|
|
|
|
self.pos = (pos_y, pos_x)
|
|
|
|
self.goal_x = goal_x
|
|
|
|
self.goal_y = goal_y
|
|
|
|
self.g_cost = g_cost
|
|
|
|
self.parent = parent
|
|
|
|
self.f_cost = self.calculate_heuristic()
|
|
|
|
|
|
|
|
def calculate_heuristic(self) -> float:
|
|
|
|
"""
|
|
|
|
The heuristic here is the Manhattan Distance
|
|
|
|
Could elaborate to offer more than one choice
|
|
|
|
"""
|
|
|
|
dy = abs(self.pos_x - self.goal_x)
|
|
|
|
dx = abs(self.pos_y - self.goal_y)
|
|
|
|
return dx + dy
|
|
|
|
|
|
|
|
def __lt__(self, other) -> bool:
|
|
|
|
return self.f_cost < other.f_cost
|
|
|
|
|
|
|
|
|
|
|
|
class GreedyBestFirst:
|
|
|
|
"""
|
|
|
|
>>> gbf = GreedyBestFirst((0, 0), (len(grid) - 1, len(grid[0]) - 1))
|
|
|
|
>>> [x.pos for x in gbf.get_successors(gbf.start)]
|
|
|
|
[(1, 0), (0, 1)]
|
|
|
|
>>> (gbf.start.pos_y + delta[3][0], gbf.start.pos_x + delta[3][1])
|
|
|
|
(0, 1)
|
|
|
|
>>> (gbf.start.pos_y + delta[2][0], gbf.start.pos_x + delta[2][1])
|
|
|
|
(1, 0)
|
|
|
|
>>> gbf.retrace_path(gbf.start)
|
|
|
|
[(0, 0)]
|
|
|
|
>>> gbf.search() # doctest: +NORMALIZE_WHITESPACE
|
|
|
|
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 1), (5, 1), (6, 1),
|
|
|
|
(6, 2), (6, 3), (5, 3), (5, 4), (5, 5), (6, 5), (6, 6)]
|
|
|
|
"""
|
|
|
|
|
2021-07-27 11:21:00 +00:00
|
|
|
def __init__(self, start: tuple[int, int], goal: tuple[int, int]):
|
2020-05-20 21:25:48 +00:00
|
|
|
self.start = Node(start[1], start[0], goal[1], goal[0], 0, None)
|
|
|
|
self.target = Node(goal[1], goal[0], goal[1], goal[0], 99999, None)
|
|
|
|
|
|
|
|
self.open_nodes = [self.start]
|
2021-07-27 11:21:00 +00:00
|
|
|
self.closed_nodes: list[Node] = []
|
2020-05-20 21:25:48 +00:00
|
|
|
|
|
|
|
self.reached = False
|
|
|
|
|
2021-09-07 11:37:03 +00:00
|
|
|
def search(self) -> Path | None:
|
2020-05-20 21:25:48 +00:00
|
|
|
"""
|
|
|
|
Search for the path,
|
|
|
|
if a path is not found, only the starting position is returned
|
|
|
|
"""
|
|
|
|
while self.open_nodes:
|
|
|
|
# Open Nodes are sorted using __lt__
|
|
|
|
self.open_nodes.sort()
|
|
|
|
current_node = self.open_nodes.pop(0)
|
|
|
|
|
|
|
|
if current_node.pos == self.target.pos:
|
|
|
|
self.reached = True
|
|
|
|
return self.retrace_path(current_node)
|
|
|
|
|
|
|
|
self.closed_nodes.append(current_node)
|
|
|
|
successors = self.get_successors(current_node)
|
|
|
|
|
|
|
|
for child_node in successors:
|
|
|
|
if child_node in self.closed_nodes:
|
|
|
|
continue
|
|
|
|
|
|
|
|
if child_node not in self.open_nodes:
|
|
|
|
self.open_nodes.append(child_node)
|
|
|
|
else:
|
|
|
|
# retrieve the best current path
|
|
|
|
better_node = self.open_nodes.pop(self.open_nodes.index(child_node))
|
|
|
|
|
|
|
|
if child_node.g_cost < better_node.g_cost:
|
|
|
|
self.open_nodes.append(child_node)
|
|
|
|
else:
|
|
|
|
self.open_nodes.append(better_node)
|
|
|
|
|
2021-07-27 11:21:00 +00:00
|
|
|
if not self.reached:
|
2020-05-20 21:25:48 +00:00
|
|
|
return [self.start.pos]
|
2021-07-27 11:21:00 +00:00
|
|
|
return None
|
2020-05-20 21:25:48 +00:00
|
|
|
|
2020-09-23 11:30:13 +00:00
|
|
|
def get_successors(self, parent: Node) -> list[Node]:
|
2020-05-20 21:25:48 +00:00
|
|
|
"""
|
|
|
|
Returns a list of successors (both in the grid and free spaces)
|
|
|
|
"""
|
|
|
|
successors = []
|
|
|
|
for action in delta:
|
|
|
|
pos_x = parent.pos_x + action[1]
|
|
|
|
pos_y = parent.pos_y + action[0]
|
|
|
|
|
|
|
|
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(grid) - 1):
|
|
|
|
continue
|
|
|
|
|
|
|
|
if grid[pos_y][pos_x] != 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
successors.append(
|
|
|
|
Node(
|
|
|
|
pos_x,
|
|
|
|
pos_y,
|
|
|
|
self.target.pos_y,
|
|
|
|
self.target.pos_x,
|
|
|
|
parent.g_cost + 1,
|
|
|
|
parent,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return successors
|
|
|
|
|
2021-09-07 11:37:03 +00:00
|
|
|
def retrace_path(self, node: Node | None) -> Path:
|
2020-05-20 21:25:48 +00:00
|
|
|
"""
|
|
|
|
Retrace the path from parents to parents until start node
|
|
|
|
"""
|
|
|
|
current_node = node
|
|
|
|
path = []
|
|
|
|
while current_node is not None:
|
|
|
|
path.append((current_node.pos_y, current_node.pos_x))
|
|
|
|
current_node = current_node.parent
|
|
|
|
path.reverse()
|
|
|
|
return path
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
init = (0, 0)
|
|
|
|
goal = (len(grid) - 1, len(grid[0]) - 1)
|
|
|
|
for elem in grid:
|
|
|
|
print(elem)
|
|
|
|
|
|
|
|
print("------")
|
|
|
|
|
|
|
|
greedy_bf = GreedyBestFirst(init, goal)
|
|
|
|
path = greedy_bf.search()
|
2021-07-27 11:21:00 +00:00
|
|
|
if path:
|
|
|
|
for pos_x, pos_y in path:
|
|
|
|
grid[pos_x][pos_y] = 2
|
2020-05-20 21:25:48 +00:00
|
|
|
|
2021-07-27 11:21:00 +00:00
|
|
|
for elem in grid:
|
|
|
|
print(elem)
|