mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
143 lines
5.2 KiB
Python
143 lines
5.2 KiB
Python
|
"""
|
|||
|
https://en.wikipedia.org/wiki/Augmented_matrix
|
|||
|
|
|||
|
This algorithm solves simultaneous linear equations of the form
|
|||
|
λa + λb + λc + λd + ... = γ as [λ, λ, λ, λ, ..., γ]
|
|||
|
Where λ & γ are individual coefficients, the no. of equations = no. of coefficients - 1
|
|||
|
|
|||
|
Note in order to work there must exist 1 equation where all instances of λ and γ != 0
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
def simplify(current_set: list[list]) -> list[list]:
|
|||
|
"""
|
|||
|
>>> simplify([[1, 2, 3], [4, 5, 6]])
|
|||
|
[[1.0, 2.0, 3.0], [0.0, 0.75, 1.5]]
|
|||
|
>>> simplify([[5, 2, 5], [5, 1, 10]])
|
|||
|
[[1.0, 0.4, 1.0], [0.0, 0.2, -1.0]]
|
|||
|
"""
|
|||
|
# Divide each row by magnitude of first term --> creates 'unit' matrix
|
|||
|
duplicate_set = current_set.copy()
|
|||
|
for row_index, row in enumerate(duplicate_set):
|
|||
|
magnitude = row[0]
|
|||
|
for column_index, column in enumerate(row):
|
|||
|
if magnitude == 0:
|
|||
|
current_set[row_index][column_index] = column
|
|||
|
continue
|
|||
|
current_set[row_index][column_index] = column / magnitude
|
|||
|
# Subtract to cancel term
|
|||
|
first_row = current_set[0]
|
|||
|
final_set = [first_row]
|
|||
|
current_set = current_set[1::]
|
|||
|
for row in current_set:
|
|||
|
temp_row = []
|
|||
|
# If first term is 0, it is already in form we want, so we preserve it
|
|||
|
if row[0] == 0:
|
|||
|
final_set.append(row)
|
|||
|
continue
|
|||
|
for column_index in range(len(row)):
|
|||
|
temp_row.append(first_row[column_index] - row[column_index])
|
|||
|
final_set.append(temp_row)
|
|||
|
# Create next recursion iteration set
|
|||
|
if len(final_set[0]) != 3:
|
|||
|
current_first_row = final_set[0]
|
|||
|
current_first_column = []
|
|||
|
next_iteration = []
|
|||
|
for row in final_set[1::]:
|
|||
|
current_first_column.append(row[0])
|
|||
|
next_iteration.append(row[1::])
|
|||
|
resultant = simplify(next_iteration)
|
|||
|
for i in range(len(resultant)):
|
|||
|
resultant[i].insert(0, current_first_column[i])
|
|||
|
resultant.insert(0, current_first_row)
|
|||
|
final_set = resultant
|
|||
|
return final_set
|
|||
|
|
|||
|
|
|||
|
def solve_simultaneous(equations: list[list]) -> list:
|
|||
|
"""
|
|||
|
>>> solve_simultaneous([[1, 2, 3],[4, 5, 6]])
|
|||
|
[-1.0, 2.0]
|
|||
|
>>> solve_simultaneous([[0, -3, 1, 7],[3, 2, -1, 11],[5, 1, -2, 12]])
|
|||
|
[6.4, 1.2, 10.6]
|
|||
|
>>> solve_simultaneous([])
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
IndexError: solve_simultaneous() requires n lists of length n+1
|
|||
|
>>> solve_simultaneous([[1, 2, 3],[1, 2]])
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
IndexError: solve_simultaneous() requires n lists of length n+1
|
|||
|
>>> solve_simultaneous([[1, 2, 3],["a", 7, 8]])
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ValueError: solve_simultaneous() requires lists of integers
|
|||
|
>>> solve_simultaneous([[0, 2, 3],[4, 0, 6]])
|
|||
|
Traceback (most recent call last):
|
|||
|
...
|
|||
|
ValueError: solve_simultaneous() requires at least 1 full equation
|
|||
|
"""
|
|||
|
if len(equations) == 0:
|
|||
|
raise IndexError("solve_simultaneous() requires n lists of length n+1")
|
|||
|
_length = len(equations) + 1
|
|||
|
if any(len(item) != _length for item in equations):
|
|||
|
raise IndexError("solve_simultaneous() requires n lists of length n+1")
|
|||
|
for row in equations:
|
|||
|
if any(not isinstance(column, (int, float)) for column in row):
|
|||
|
raise ValueError("solve_simultaneous() requires lists of integers")
|
|||
|
if len(equations) == 1:
|
|||
|
return [equations[0][-1] / equations[0][0]]
|
|||
|
data_set = equations.copy()
|
|||
|
if any(0 in row for row in data_set):
|
|||
|
temp_data = data_set.copy()
|
|||
|
full_row = []
|
|||
|
for row_index, row in enumerate(temp_data):
|
|||
|
if 0 not in row:
|
|||
|
full_row = data_set.pop(row_index)
|
|||
|
break
|
|||
|
if not full_row:
|
|||
|
raise ValueError("solve_simultaneous() requires at least 1 full equation")
|
|||
|
data_set.insert(0, full_row)
|
|||
|
useable_form = data_set.copy()
|
|||
|
simplified = simplify(useable_form)
|
|||
|
simplified = simplified[::-1]
|
|||
|
solutions: list = []
|
|||
|
for row in simplified:
|
|||
|
current_solution = row[-1]
|
|||
|
if not solutions:
|
|||
|
if row[-2] == 0:
|
|||
|
solutions.append(0)
|
|||
|
continue
|
|||
|
solutions.append(current_solution / row[-2])
|
|||
|
continue
|
|||
|
temp_row = row.copy()[: len(row) - 1 :]
|
|||
|
while temp_row[0] == 0:
|
|||
|
temp_row.pop(0)
|
|||
|
if len(temp_row) == 0:
|
|||
|
solutions.append(0)
|
|||
|
continue
|
|||
|
temp_row = temp_row[1::]
|
|||
|
temp_row = temp_row[::-1]
|
|||
|
for column_index, column in enumerate(temp_row):
|
|||
|
current_solution -= column * solutions[column_index]
|
|||
|
solutions.append(current_solution)
|
|||
|
final = []
|
|||
|
for item in solutions:
|
|||
|
final.append(float(round(item, 5)))
|
|||
|
return final[::-1]
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
import doctest
|
|||
|
|
|||
|
doctest.testmod()
|
|||
|
eq = [
|
|||
|
[2, 1, 1, 1, 1, 4],
|
|||
|
[1, 2, 1, 1, 1, 5],
|
|||
|
[1, 1, 2, 1, 1, 6],
|
|||
|
[1, 1, 1, 2, 1, 7],
|
|||
|
[1, 1, 1, 1, 2, 8],
|
|||
|
]
|
|||
|
print(solve_simultaneous(eq))
|
|||
|
print(solve_simultaneous([[4, 2]]))
|