Python/project_euler/problem_046/sol1.py

117 lines
2.7 KiB
Python
Raw Normal View History

"""
Problem 46: https://projecteuler.net/problem=46
It was proposed by Christian Goldbach that every odd composite number can be
written as the sum of a prime and twice a square.
9 = 7 + 2 × 12
15 = 7 + 2 × 22
21 = 3 + 2 × 32
25 = 7 + 2 × 32
27 = 19 + 2 × 22
33 = 31 + 2 × 12
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a
prime and twice a square?
"""
from __future__ import annotations
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
odd_composites = [num for num in range(3, 100001, 2) if not is_prime(num)]
def compute_nums(n: int) -> list[int]:
"""
Returns a list of first n odd composite numbers which do
not follow the conjecture.
>>> compute_nums(1)
[5777]
>>> compute_nums(2)
[5777, 5993]
>>> compute_nums(0)
Traceback (most recent call last):
...
ValueError: n must be >= 0
>>> compute_nums("a")
Traceback (most recent call last):
...
ValueError: n must be an integer
>>> compute_nums(1.1)
Traceback (most recent call last):
...
ValueError: n must be an integer
"""
if not isinstance(n, int):
raise ValueError("n must be an integer")
if n <= 0:
raise ValueError("n must be >= 0")
list_nums = []
for num in range(len(odd_composites)):
i = 0
while 2 * i * i <= odd_composites[num]:
rem = odd_composites[num] - 2 * i * i
if is_prime(rem):
break
i += 1
else:
list_nums.append(odd_composites[num])
if len(list_nums) == n:
return list_nums
return []
def solution() -> int:
"""Return the solution to the problem"""
return compute_nums(1)[0]
if __name__ == "__main__":
print(f"{solution() = }")