Python/maths/monte_carlo_dice.py

48 lines
1.3 KiB
Python
Raw Normal View History

from __future__ import annotations
import random
class Dice:
NUM_SIDES = 6
def __init__(self):
""" Initialize a six sided dice """
self.sides = list(range(1, Dice.NUM_SIDES + 1))
def roll(self):
return random.choice(self.sides)
def _str_(self):
return "Fair Dice"
def throw_dice(num_throws: int, num_dice: int = 2) -> list[float]:
"""
Return probability list of all possible sums when throwing dice.
>>> random.seed(0)
>>> throw_dice(10, 1)
[10.0, 0.0, 30.0, 50.0, 10.0, 0.0]
>>> throw_dice(100, 1)
[19.0, 17.0, 17.0, 11.0, 23.0, 13.0]
>>> throw_dice(1000, 1)
[18.8, 15.5, 16.3, 17.6, 14.2, 17.6]
>>> throw_dice(10000, 1)
[16.35, 16.89, 16.93, 16.6, 16.52, 16.71]
>>> throw_dice(10000, 2)
[2.74, 5.6, 7.99, 11.26, 13.92, 16.7, 14.44, 10.63, 8.05, 5.92, 2.75]
"""
dices = [Dice() for i in range(num_dice)]
count_of_sum = [0] * (len(dices) * Dice.NUM_SIDES + 1)
for i in range(num_throws):
count_of_sum[sum(dice.roll() for dice in dices)] += 1
probability = [round((count * 100) / num_throws, 2) for count in count_of_sum]
return probability[num_dice:] # remove probability of sums that never appear
if __name__ == "__main__":
import doctest
doctest.testmod()