Python/maths/series/p_series.py

53 lines
1.4 KiB
Python
Raw Normal View History

"""
This is a pure Python implementation of the P-Series algorithm
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#P-series
For doctests run following command:
python -m doctest -v p_series.py
or
python3 -m doctest -v p_series.py
For manual testing run:
python3 p_series.py
"""
from __future__ import annotations
def p_series(nth_term: int | float | str, power: int | float | str) -> list[str]:
"""
Pure Python implementation of P-Series algorithm
:return: The P-Series starting from 1 to last (nth) term
Examples:
>>> p_series(5, 2)
['1', '1 / 4', '1 / 9', '1 / 16', '1 / 25']
>>> p_series(-5, 2)
[]
>>> p_series(5, -2)
['1', '1 / 0.25', '1 / 0.1111111111111111', '1 / 0.0625', '1 / 0.04']
>>> p_series("", 1000)
['']
>>> p_series(0, 0)
[]
>>> p_series(1, 1)
['1']
"""
if nth_term == "":
return [""]
nth_term = int(nth_term)
power = int(power)
series: list[str] = []
for temp in range(int(nth_term)):
series.append(f"1 / {pow(temp + 1, int(power))}" if series else "1")
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
nth_term = int(input("Enter the last number (nth term) of the P-Series"))
power = int(input("Enter the power for P-Series"))
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
print(p_series(nth_term, power))