2018-03-20 23:48:58 +00:00
|
|
|
#!/usr/bin/env python3
|
2022-10-30 10:25:51 +00:00
|
|
|
"""
|
|
|
|
Double hashing is a collision resolving technique in Open Addressed Hash tables.
|
|
|
|
Double hashing uses the idea of applying a second hash function to key when a collision
|
|
|
|
occurs. The advantage of Double hashing is that it is one of the best form of probing,
|
|
|
|
producing a uniform distribution of records throughout a hash table. This technique
|
|
|
|
does not yield any clusters. It is one of effective method for resolving collisions.
|
|
|
|
|
|
|
|
Double hashing can be done using: (hash1(key) + i * hash2(key)) % TABLE_SIZE
|
|
|
|
Where hash1() and hash2() are hash functions and TABLE_SIZE is size of hash table.
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Double_hashing
|
|
|
|
"""
|
2020-09-28 21:41:04 +00:00
|
|
|
from .hash_table import HashTable
|
2022-07-11 14:36:57 +00:00
|
|
|
from .number_theory.prime_numbers import is_prime, next_prime
|
2018-03-20 23:48:58 +00:00
|
|
|
|
|
|
|
|
|
|
|
class DoubleHash(HashTable):
|
|
|
|
"""
|
2020-09-10 08:31:26 +00:00
|
|
|
Hash Table example with open addressing and Double Hash
|
2018-03-20 23:48:58 +00:00
|
|
|
"""
|
2019-10-05 05:14:13 +00:00
|
|
|
|
2018-03-20 23:48:58 +00:00
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
def __hash_function_2(self, value, data):
|
2019-10-05 05:14:13 +00:00
|
|
|
next_prime_gt = (
|
|
|
|
next_prime(value % self.size_table)
|
2022-07-11 14:36:57 +00:00
|
|
|
if not is_prime(value % self.size_table)
|
2019-10-05 05:14:13 +00:00
|
|
|
else value % self.size_table
|
|
|
|
) # gt = bigger than
|
2018-03-20 23:48:58 +00:00
|
|
|
return next_prime_gt - (data % next_prime_gt)
|
|
|
|
|
|
|
|
def __hash_double_function(self, key, data, increment):
|
|
|
|
return (increment * self.__hash_function_2(key, data)) % self.size_table
|
|
|
|
|
2020-03-16 10:19:13 +00:00
|
|
|
def _collision_resolution(self, key, data=None):
|
2023-10-27 16:40:42 +00:00
|
|
|
"""
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
1. Try to add three data elements when the size is three
|
|
|
|
>>> dh = DoubleHash(3)
|
|
|
|
>>> dh.insert_data(10)
|
|
|
|
>>> dh.insert_data(20)
|
|
|
|
>>> dh.insert_data(30)
|
|
|
|
>>> dh.keys()
|
|
|
|
{1: 10, 2: 20, 0: 30}
|
|
|
|
|
|
|
|
2. Try to add three data elements when the size is two
|
|
|
|
>>> dh = DoubleHash(2)
|
|
|
|
>>> dh.insert_data(10)
|
|
|
|
>>> dh.insert_data(20)
|
|
|
|
>>> dh.insert_data(30)
|
|
|
|
>>> dh.keys()
|
|
|
|
{10: 10, 9: 20, 8: 30}
|
|
|
|
|
|
|
|
3. Try to add three data elements when the size is four
|
|
|
|
>>> dh = DoubleHash(4)
|
|
|
|
>>> dh.insert_data(10)
|
|
|
|
>>> dh.insert_data(20)
|
|
|
|
>>> dh.insert_data(30)
|
|
|
|
>>> dh.keys()
|
|
|
|
{9: 20, 10: 10, 8: 30}
|
|
|
|
"""
|
2018-03-20 23:48:58 +00:00
|
|
|
i = 1
|
|
|
|
new_key = self.hash_function(data)
|
|
|
|
|
|
|
|
while self.values[new_key] is not None and self.values[new_key] != key:
|
2019-10-05 05:14:13 +00:00
|
|
|
new_key = (
|
|
|
|
self.__hash_double_function(key, data, i)
|
|
|
|
if self.balanced_factor() >= self.lim_charge
|
|
|
|
else None
|
|
|
|
)
|
|
|
|
if new_key is None:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
i += 1
|
2018-03-20 23:48:58 +00:00
|
|
|
|
|
|
|
return new_key
|
2023-10-27 16:40:42 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import doctest
|
|
|
|
|
|
|
|
doctest.testmod()
|