2017-11-25 09:23:50 +00:00
|
|
|
from __future__ import print_function
|
2017-02-03 16:32:05 +00:00
|
|
|
from random import randint
|
|
|
|
from tempfile import TemporaryFile
|
|
|
|
import numpy as np
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _inPlaceQuickSort(A,start,end):
|
|
|
|
count = 0
|
|
|
|
if start<end:
|
|
|
|
pivot=randint(start,end)
|
|
|
|
temp=A[end]
|
|
|
|
A[end]=A[pivot]
|
|
|
|
A[pivot]=temp
|
|
|
|
|
|
|
|
p,count= _inPlacePartition(A,start,end)
|
|
|
|
count += _inPlaceQuickSort(A,start,p-1)
|
|
|
|
count += _inPlaceQuickSort(A,p+1,end)
|
|
|
|
return count
|
|
|
|
|
|
|
|
def _inPlacePartition(A,start,end):
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
pivot= randint(start,end)
|
|
|
|
temp=A[end]
|
|
|
|
A[end]=A[pivot]
|
|
|
|
A[pivot]=temp
|
|
|
|
newPivotIndex=start-1
|
|
|
|
for index in range(start,end):
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
if A[index]<A[end]:#check if current val is less than pivot value
|
|
|
|
newPivotIndex=newPivotIndex+1
|
|
|
|
temp=A[newPivotIndex]
|
|
|
|
A[newPivotIndex]=A[index]
|
|
|
|
A[index]=temp
|
|
|
|
|
|
|
|
temp=A[newPivotIndex+1]
|
|
|
|
A[newPivotIndex+1]=A[end]
|
|
|
|
A[end]=temp
|
|
|
|
return newPivotIndex+1,count
|
|
|
|
|
|
|
|
outfile = TemporaryFile()
|
|
|
|
p = 100 # 1000 elements are to be sorted
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mu, sigma = 0, 1 # mean and standard deviation
|
|
|
|
X = np.random.normal(mu, sigma, p)
|
|
|
|
np.save(outfile, X)
|
|
|
|
print('The array is')
|
|
|
|
print(X)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outfile.seek(0) # using the same array
|
|
|
|
M = np.load(outfile)
|
|
|
|
r = (len(M)-1)
|
|
|
|
z = _inPlaceQuickSort(M,0,r)
|
|
|
|
|
|
|
|
print("No of Comparisons for 100 elements selected from a standard normal distribution is :")
|
|
|
|
print(z)
|