mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
42 lines
1.0 KiB
Python
42 lines
1.0 KiB
Python
|
"""
|
|||
|
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers.
|
|||
|
https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
|
|||
|
|
|||
|
A Mersenne number is a number that is one less than a power of two.
|
|||
|
That is M_p = 2^p - 1
|
|||
|
https://en.wikipedia.org/wiki/Mersenne_prime
|
|||
|
|
|||
|
The Lucas–Lehmer test is the primality test used by the
|
|||
|
Great Internet Mersenne Prime Search (GIMPS) to locate large primes.
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
# Primality test 2^p - 1
|
|||
|
# Return true if 2^p - 1 is prime
|
|||
|
def lucas_lehmer_test(p: int) -> bool:
|
|||
|
"""
|
|||
|
>>> lucas_lehmer_test(p=7)
|
|||
|
True
|
|||
|
|
|||
|
>>> lucas_lehmer_test(p=11)
|
|||
|
False
|
|||
|
|
|||
|
# M_11 = 2^11 - 1 = 2047 = 23 * 89
|
|||
|
"""
|
|||
|
|
|||
|
if p < 2:
|
|||
|
raise ValueError("p should not be less than 2!")
|
|||
|
elif p == 2:
|
|||
|
return True
|
|||
|
|
|||
|
s = 4
|
|||
|
M = (1 << p) - 1
|
|||
|
for i in range(p - 2):
|
|||
|
s = ((s * s) - 2) % M
|
|||
|
return s == 0
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
print(lucas_lehmer_test(7))
|
|||
|
print(lucas_lehmer_test(11))
|