2020-09-23 11:30:13 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2020-07-23 11:18:17 +00:00
|
|
|
from decimal import Decimal
|
|
|
|
|
|
|
|
|
2020-09-23 11:30:13 +00:00
|
|
|
def inverse_of_matrix(matrix: list[list[float]]) -> list[list[float]]:
|
2020-07-23 11:18:17 +00:00
|
|
|
"""
|
|
|
|
A matrix multiplied with its inverse gives the identity matrix.
|
|
|
|
This function finds the inverse of a 2x2 matrix.
|
|
|
|
If the determinant of a matrix is 0, its inverse does not exist.
|
|
|
|
|
|
|
|
Sources for fixing inaccurate float arithmetic:
|
|
|
|
https://stackoverflow.com/questions/6563058/how-do-i-use-accurate-float-arithmetic-in-python
|
|
|
|
https://docs.python.org/3/library/decimal.html
|
|
|
|
|
|
|
|
>>> inverse_of_matrix([[2, 5], [2, 0]])
|
|
|
|
[[0.0, 0.5], [0.2, -0.2]]
|
|
|
|
>>> inverse_of_matrix([[2.5, 5], [1, 2]])
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: This matrix has no inverse.
|
|
|
|
>>> inverse_of_matrix([[12, -16], [-9, 0]])
|
|
|
|
[[0.0, -0.1111111111111111], [-0.0625, -0.08333333333333333]]
|
|
|
|
>>> inverse_of_matrix([[12, 3], [16, 8]])
|
|
|
|
[[0.16666666666666666, -0.0625], [-0.3333333333333333, 0.25]]
|
|
|
|
>>> inverse_of_matrix([[10, 5], [3, 2.5]])
|
|
|
|
[[0.25, -0.5], [-0.3, 1.0]]
|
|
|
|
"""
|
|
|
|
|
|
|
|
D = Decimal # An abbreviation to be conciseness
|
|
|
|
# Calculate the determinant of the matrix
|
|
|
|
determinant = D(matrix[0][0]) * D(matrix[1][1]) - D(matrix[1][0]) * D(matrix[0][1])
|
|
|
|
if determinant == 0:
|
|
|
|
raise ValueError("This matrix has no inverse.")
|
|
|
|
# Creates a copy of the matrix with swapped positions of the elements
|
|
|
|
swapped_matrix = [[0.0, 0.0], [0.0, 0.0]]
|
|
|
|
swapped_matrix[0][0], swapped_matrix[1][1] = matrix[1][1], matrix[0][0]
|
|
|
|
swapped_matrix[1][0], swapped_matrix[0][1] = -matrix[1][0], -matrix[0][1]
|
|
|
|
# Calculate the inverse of the matrix
|
|
|
|
return [[float(D(n) / determinant) or 0.0 for n in row] for row in swapped_matrix]
|