Python/neural_network/activation_functions/leaky_rectified_linear_unit.py

46 lines
1.3 KiB
Python
Raw Normal View History

2023-08-14 23:16:19 +05:30
"""
Leaky Rectified Linear Unit (LeakyReLU)
Input: vector (type: np.ndarray) , alpha (type: float)
Output: vector (type: np.ndarray)
UseCase: LeakyReLU solves the issue of dead neurons or vanishing gradient problem.
Refer the below link for more information:
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLU
Applications:
Generative Adversarial Networks (GANs)
Object Detection and Image Segmentation
"""
import numpy as np
def leaky_rectified_linear_unit(vector: np.ndarray, alpha: float) -> np.ndarray:
"""
Implements the LeakyReLU activation function.
Parameters:
2023-08-14 23:23:13 +05:30
vector: the array containing input of leakyReLu activation
2023-08-14 23:16:19 +05:30
alpha: hyperparameter
return:
2023-08-14 23:23:13 +05:30
leaky_relu (np.array): The input numpy array after applying leakyReLu.
2023-08-14 23:16:19 +05:30
Formula : f(x) = x if x > 0 else f(x) = alpha * x
Examples:
>>> leaky_rectified_linear_unit(vector=np.array([2.3,0.6,-2,-3.8]), alpha=0.3)
array([ 2.3 , 0.6 , -0.6 , -1.14])
>>> leaky_rectified_linear_unit(vector=np.array([-9.2,-0.3,0.45,-4.56]), \
alpha=0.067)
array([-0.6164 , -0.0201 , 0.45 , -0.30552])
"""
return np.where(vector > 0, vector, alpha * vector)
if __name__ == "__main__":
import doctest
doctest.testmod()