mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-05 09:57:01 +00:00
66 lines
1.6 KiB
Python
66 lines
1.6 KiB
Python
|
"""
|
||
|
Project Euler Problem 800: https://projecteuler.net/problem=800
|
||
|
|
||
|
An integer of the form p^q q^p with prime numbers p != q is called a hybrid-integer.
|
||
|
For example, 800 = 2^5 5^2 is a hybrid-integer.
|
||
|
|
||
|
We define C(n) to be the number of hybrid-integers less than or equal to n.
|
||
|
You are given C(800) = 2 and C(800^800) = 10790
|
||
|
|
||
|
Find C(800800^800800)
|
||
|
"""
|
||
|
|
||
|
from math import isqrt, log2
|
||
|
|
||
|
|
||
|
def calculate_prime_numbers(max_number: int) -> list[int]:
|
||
|
"""
|
||
|
Returns prime numbers below max_number
|
||
|
|
||
|
>>> calculate_prime_numbers(10)
|
||
|
[2, 3, 5, 7]
|
||
|
"""
|
||
|
|
||
|
is_prime = [True] * max_number
|
||
|
for i in range(2, isqrt(max_number - 1) + 1):
|
||
|
if is_prime[i]:
|
||
|
for j in range(i**2, max_number, i):
|
||
|
is_prime[j] = False
|
||
|
|
||
|
return [i for i in range(2, max_number) if is_prime[i]]
|
||
|
|
||
|
|
||
|
def solution(base: int = 800800, degree: int = 800800) -> int:
|
||
|
"""
|
||
|
Returns the number of hybrid-integers less than or equal to base^degree
|
||
|
|
||
|
>>> solution(800, 1)
|
||
|
2
|
||
|
|
||
|
>>> solution(800, 800)
|
||
|
10790
|
||
|
"""
|
||
|
|
||
|
upper_bound = degree * log2(base)
|
||
|
max_prime = int(upper_bound)
|
||
|
prime_numbers = calculate_prime_numbers(max_prime)
|
||
|
|
||
|
hybrid_integers_count = 0
|
||
|
left = 0
|
||
|
right = len(prime_numbers) - 1
|
||
|
while left < right:
|
||
|
while (
|
||
|
prime_numbers[right] * log2(prime_numbers[left])
|
||
|
+ prime_numbers[left] * log2(prime_numbers[right])
|
||
|
> upper_bound
|
||
|
):
|
||
|
right -= 1
|
||
|
hybrid_integers_count += right - left
|
||
|
left += 1
|
||
|
|
||
|
return hybrid_integers_count
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
print(f"{solution() = }")
|