2018-10-19 12:48:28 +00:00
|
|
|
# Implementing Newton Raphson method in Python
|
2019-07-20 15:33:04 +00:00
|
|
|
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
|
2019-10-05 05:14:13 +00:00
|
|
|
# The Newton-Raphson method (also known as Newton's method) is a way to
|
|
|
|
# quickly find a good approximation for the root of a real-valued function
|
2018-10-19 12:48:28 +00:00
|
|
|
from sympy import diff
|
|
|
|
from decimal import Decimal
|
|
|
|
|
2019-10-05 05:14:13 +00:00
|
|
|
|
2018-10-19 12:48:28 +00:00
|
|
|
def NewtonRaphson(func, a):
|
2019-10-05 05:14:13 +00:00
|
|
|
""" Finds root from the point 'a' onwards by Newton-Raphson method """
|
2018-10-19 12:48:28 +00:00
|
|
|
while True:
|
2019-10-05 05:14:13 +00:00
|
|
|
c = Decimal(a) - (Decimal(eval(func)) / Decimal(eval(str(diff(func)))))
|
2019-08-06 10:14:23 +00:00
|
|
|
|
2018-10-19 12:48:28 +00:00
|
|
|
a = c
|
|
|
|
|
|
|
|
# This number dictates the accuracy of the answer
|
2019-10-05 05:14:13 +00:00
|
|
|
if abs(eval(func)) < 10 ** -15:
|
|
|
|
return c
|
2019-08-06 10:14:23 +00:00
|
|
|
|
2018-10-19 12:48:28 +00:00
|
|
|
|
|
|
|
# Let's Execute
|
2019-10-05 05:14:13 +00:00
|
|
|
if __name__ == "__main__":
|
2018-10-19 12:48:28 +00:00
|
|
|
# Find root of trigonometric function
|
|
|
|
# Find value of pi
|
2019-10-05 05:14:13 +00:00
|
|
|
print("sin(x) = 0", NewtonRaphson("sin(x)", 2))
|
2019-08-06 10:14:23 +00:00
|
|
|
|
2018-10-19 12:48:28 +00:00
|
|
|
# Find root of polynomial
|
2019-10-05 05:14:13 +00:00
|
|
|
print("x**2 - 5*x +2 = 0", NewtonRaphson("x**2 - 5*x +2", 0.4))
|
2019-08-06 10:14:23 +00:00
|
|
|
|
2018-10-19 12:48:28 +00:00
|
|
|
# Find Square Root of 5
|
2019-10-05 05:14:13 +00:00
|
|
|
print("x**2 - 5 = 0", NewtonRaphson("x**2 - 5", 0.1))
|
2018-10-19 12:48:28 +00:00
|
|
|
|
|
|
|
# Exponential Roots
|
2019-10-05 05:14:13 +00:00
|
|
|
print("exp(x) - 1 = 0", NewtonRaphson("exp(x) - 1", 0))
|