Python/machine_learning/random_forest_classifier.py

46 lines
1.1 KiB
Python
Raw Normal View History

# Random Forest Classifier Example
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import plot_confusion_matrix
import matplotlib.pyplot as plt
def main():
"""
Random Forest Classifier Example using sklearn function.
Iris type dataset is used to demonstrate algorithm.
"""
# Load Iris dataset
iris = load_iris()
# Split dataset into train and test data
X = iris["data"] # features
Y = iris["target"]
x_train, x_test, y_train, y_test = train_test_split(
X, Y, test_size=0.3, random_state=1
)
# Random Forest Classifier
rand_for = RandomForestClassifier(random_state=42, n_estimators=100)
rand_for.fit(x_train, y_train)
# Display Confusion Matrix of Classifier
plot_confusion_matrix(
rand_for,
x_test,
y_test,
display_labels=iris["target_names"],
cmap="Blues",
normalize="true",
)
plt.title("Normalized Confusion Matrix - IRIS Dataset")
plt.show()
if __name__ == "__main__":
main()