mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Added Random Forest Classifier (#1738)
* Added Random Forest Regressor * Updated file to standard * Added Random Forest Classifier (Iris dataset) and a Confusion Matrix for result visualization
This commit is contained in:
parent
5e3eb12a7b
commit
10fc90c7bd
45
machine_learning/random_forest_classifier.py
Normal file
45
machine_learning/random_forest_classifier.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
# Random Forest Classifier Example
|
||||
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.metrics import plot_confusion_matrix
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
"""
|
||||
Random Tree Classifier Example using sklearn function.
|
||||
Iris type dataset is used to demonstrate algorithm.
|
||||
"""
|
||||
|
||||
# Load Iris house price dataset
|
||||
iris = load_iris()
|
||||
|
||||
# Split dataset into train and test data
|
||||
X = iris["data"] # features
|
||||
Y = iris["target"]
|
||||
x_train, x_test, y_train, y_test = train_test_split(
|
||||
X, Y, test_size=0.3, random_state=1
|
||||
)
|
||||
|
||||
# Random Forest Classifier
|
||||
rand_for = RandomForestClassifier(random_state=42, n_estimators=100)
|
||||
rand_for.fit(x_train, y_train)
|
||||
|
||||
# Display Confusion Matrix of Classifier
|
||||
plot_confusion_matrix(
|
||||
rand_for,
|
||||
x_test,
|
||||
y_test,
|
||||
display_labels=iris["target_names"],
|
||||
cmap="Blues",
|
||||
normalize="true",
|
||||
)
|
||||
plt.title("Normalized Confusion Matrix - IRIS Dataset")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user