Python/project_euler/problem_27/problem_27_sol1.py

70 lines
2.0 KiB
Python
Raw Normal View History

"""
Euler discovered the remarkable quadratic formula:
n2 + n + 41
It turns out that the formula will produce 40 primes for the consecutive values
n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible
by 41, and certainly when n = 41, 412 + 41 + 41 is clearly divisible by 41.
The incredible formula n2 79n + 1601 was discovered, which produces 80 primes
for the consecutive values n = 0 to 79. The product of the coefficients, 79 and
1601, is 126479.
Considering quadratics of the form:
+ an + b, where |a| < 1000 and |b| < 1000
where |n| is the modulus/absolute value of ne.g. |11| = 11 and |4| = 4
Find the product of the coefficients, a and b, for the quadratic expression that
produces the maximum number of primes for consecutive values of n, starting with
n = 0.
"""
import math
def is_prime(k: int) -> bool:
"""
Determine if a number is prime
>>> is_prime(10)
False
>>> is_prime(11)
True
"""
if k < 2 or k % 2 == 0:
return False
elif k == 2:
return True
else:
for x in range(3, int(math.sqrt(k) + 1), 2):
if k % x == 0:
return False
return True
def solution(a_limit: int, b_limit: int) -> int:
"""
>>> solution(1000, 1000)
-59231
>>> solution(200, 1000)
-59231
>>> solution(200, 200)
-4925
>>> solution(-1000, 1000)
0
>>> solution(-1000, -1000)
0
"""
longest = [0, 0, 0] # length, a, b
for a in range((a_limit * -1) + 1, a_limit):
for b in range(2, b_limit):
if is_prime(b):
count = 0
n = 0
while is_prime((n ** 2) + (a * n) + b):
count += 1
n += 1
if count > longest[0]:
longest = [count, a, b]
ans = longest[1] * longest[2]
return ans
if __name__ == "__main__":
print(solution(1000, 1000))