Python/arithmetic_analysis/newton_raphson.py

55 lines
1.8 KiB
Python
Raw Normal View History

# Implementing Newton Raphson method in Python
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
# The Newton-Raphson method (also known as Newton's method) is a way to
# quickly find a good approximation for the root of a real-valued function
from __future__ import annotations
2023-07-16 12:19:58 +05:30
from sympy import diff, symbols, sympify
2023-07-16 13:21:38 +05:30
def newton_raphson(func: str, start_point: float, precision: float = 10**-10) -> float:
"""Finds root from the point 'a' onwards by Newton-Raphson method
>>> newton_raphson("sin(x)", 2)
3.1415926536808043
>>> newton_raphson("x**2 - 5*x +2", 0.4)
2023-07-16 12:19:58 +05:30
0.4384471871911696
>>> newton_raphson("x**2 - 5", 0.1)
2.23606797749979
>>> newton_raphson("log(x)- 1", 2)
2.718281828458938
"""
2023-07-16 13:21:38 +05:30
x = start_point
symbol = symbols('x')
# expressions to be represented symbolically and manipulated algebraically
2023-07-16 13:21:38 +05:30
expression = sympify(func)
# calculates the derivative value at the current x value
derivative = diff(expression, symbol)
max_iterations = 100
2023-07-16 12:19:58 +05:30
2023-07-16 13:21:38 +05:30
for _ in range(max_iterations):
function_value = expression.subs(symbol, x)
derivative_value = derivative.subs(symbol, x)
2023-07-16 12:19:58 +05:30
2023-07-16 13:21:38 +05:30
if abs(function_value) < precision:
return float(x)
2023-07-16 13:21:38 +05:30
x = x - (function_value / derivative_value)
2023-07-16 12:19:58 +05:30
return float(x)
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}")
# Find root of polynomial
print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}")
# Find Square Root of 5
print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}")
# Exponential Roots
print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")