mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-01 00:41:09 +00:00
52 lines
1.4 KiB
Python
52 lines
1.4 KiB
Python
|
"""
|
||
|
Mean Squared Error (MSE) Loss Function
|
||
|
|
||
|
Description:
|
||
|
MSE measures the mean squared difference between true values and predicted values.
|
||
|
It serves as a measure of the model's accuracy in regression tasks.
|
||
|
|
||
|
Formula:
|
||
|
MSE = (1/n) * Σ(y_true - y_pred)^2
|
||
|
|
||
|
Source:
|
||
|
[Wikipedia - Mean squared error](https://en.wikipedia.org/wiki/Mean_squared_error)
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||
|
"""
|
||
|
Calculate the Mean Squared Error (MSE) between two arrays.
|
||
|
|
||
|
Parameters:
|
||
|
- y_true: The true values (ground truth).
|
||
|
- y_pred: The predicted values.
|
||
|
|
||
|
Returns:
|
||
|
- mse: The Mean Squared Error between y_true and y_pred.
|
||
|
|
||
|
Example usage:
|
||
|
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||
|
>>> mean_squared_error(true_values, predicted_values)
|
||
|
0.028000000000000032
|
||
|
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||
|
>>> mean_squared_error(true_labels, predicted_probs)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: Input arrays must have the same length.
|
||
|
"""
|
||
|
if len(y_true) != len(y_pred):
|
||
|
raise ValueError("Input arrays must have the same length.")
|
||
|
|
||
|
squared_errors = (y_true - y_pred) ** 2
|
||
|
return np.mean(squared_errors)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|