2020-09-23 11:30:13 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2020-08-21 06:39:03 +00:00
|
|
|
from itertools import permutations
|
2020-08-19 10:55:06 +00:00
|
|
|
from math import sqrt
|
|
|
|
|
|
|
|
"""
|
|
|
|
We shall say that an n-digit number is pandigital if it makes use of all the digits
|
|
|
|
1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
|
|
|
|
What is the largest n-digit pandigital prime that exists?
|
|
|
|
"""
|
|
|
|
|
|
|
|
"""
|
|
|
|
All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3.
|
|
|
|
So we will check only 7 digit panddigital numbers to obtain the largest possible
|
|
|
|
pandigital prime.
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def is_prime(n: int) -> bool:
|
|
|
|
"""
|
|
|
|
Returns True if n is prime,
|
|
|
|
False otherwise.
|
|
|
|
>>> is_prime(67483)
|
|
|
|
False
|
|
|
|
>>> is_prime(563)
|
|
|
|
True
|
|
|
|
>>> is_prime(87)
|
|
|
|
False
|
|
|
|
"""
|
|
|
|
if n % 2 == 0:
|
|
|
|
return False
|
|
|
|
for i in range(3, int(sqrt(n) + 1), 2):
|
|
|
|
if n % i == 0:
|
|
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
2020-09-23 11:30:13 +00:00
|
|
|
def compute_pandigital_primes(n: int) -> list[int]:
|
2020-08-19 10:55:06 +00:00
|
|
|
"""
|
|
|
|
Returns a list of all n-digit pandigital primes.
|
|
|
|
>>> compute_pandigital_primes(2)
|
|
|
|
[]
|
|
|
|
>>> max(compute_pandigital_primes(4))
|
|
|
|
4231
|
|
|
|
>>> max(compute_pandigital_primes(7))
|
|
|
|
7652413
|
|
|
|
"""
|
|
|
|
pandigital_str = "".join(str(i) for i in range(1, n + 1))
|
|
|
|
perm_list = [int("".join(i)) for i in permutations(pandigital_str, n)]
|
|
|
|
return [num for num in perm_list if is_prime(num)]
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
print(f"{max(compute_pandigital_primes(7)) = }")
|