Python/linear_algebra/lanczos_algorithm.py

35 lines
1.0 KiB
Python
Raw Normal View History

2024-11-20 08:59:48 +00:00
import numpy as np
def lanczos(a: np.ndarray) -> tuple[list[float], list[float]]:
2024-11-20 08:59:48 +00:00
"""
Implements the Lanczos algorithm for a symmetric matrix.
Parameters:
-----------
matrix : numpy.ndarray
Symmetric matrix of size (n, n).
Returns:
--------
alpha : [float]
List of diagonal elements of the resulting tridiagonal matrix.
beta : [float]
List of off-diagonal elements of the resulting tridiagonal matrix.
"""
n = a.shape[0]
v = np.zeros((n, n))
rng = np.random.default_rng()
v[:, 0] = rng.standard_normal(n)
v[:, 0] /= np.linalg.norm(v[:, 0])
alpha : list[float] = []
beta : list[float] = []
2024-11-20 08:59:48 +00:00
for j in range(n):
w = np.dot(a, v[:, j])
alpha.append(np.dot(w, v[:, j]))
2024-11-20 08:59:48 +00:00
if j == n - 1:
break
w -= alpha[j] * v[:, j]
2024-11-20 08:59:48 +00:00
if j > 0:
w -= beta[j - 1] * v[:, j - 1]
2024-11-20 08:59:48 +00:00
beta.append(np.linalg.norm(w))
v[:, j + 1] = w / beta[j]
2024-11-20 08:59:48 +00:00
return alpha, beta