mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 08:47:01 +00:00
03a37ebaca
Changed argument name A to a Changed variable name V to v Added specifications for beta and alpha Changed np.random.randn
35 lines
1.0 KiB
Python
35 lines
1.0 KiB
Python
import numpy as np
|
|
def lanczos(a: np.ndarray) -> tuple[list[float], list[float]]:
|
|
"""
|
|
Implements the Lanczos algorithm for a symmetric matrix.
|
|
|
|
Parameters:
|
|
-----------
|
|
matrix : numpy.ndarray
|
|
Symmetric matrix of size (n, n).
|
|
|
|
Returns:
|
|
--------
|
|
alpha : [float]
|
|
List of diagonal elements of the resulting tridiagonal matrix.
|
|
beta : [float]
|
|
List of off-diagonal elements of the resulting tridiagonal matrix.
|
|
"""
|
|
n = a.shape[0]
|
|
v = np.zeros((n, n))
|
|
rng = np.random.default_rng()
|
|
v[:, 0] = rng.standard_normal(n)
|
|
v[:, 0] /= np.linalg.norm(v[:, 0])
|
|
alpha : list[float] = []
|
|
beta : list[float] = []
|
|
for j in range(n):
|
|
w = np.dot(a, v[:, j])
|
|
alpha.append(np.dot(w, v[:, j]))
|
|
if j == n - 1:
|
|
break
|
|
w -= alpha[j] * v[:, j]
|
|
if j > 0:
|
|
w -= beta[j - 1] * v[:, j - 1]
|
|
beta.append(np.linalg.norm(w))
|
|
v[:, j + 1] = w / beta[j]
|
|
return alpha, beta |