mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
64 lines
1.6 KiB
Python
64 lines
1.6 KiB
Python
|
"""
|
||
|
Forward propagation explanation:
|
||
|
https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
import random
|
||
|
|
||
|
|
||
|
# Sigmoid
|
||
|
def sigmoid_function(value: float, deriv: bool = False) -> float:
|
||
|
"""Return the sigmoid function of a float.
|
||
|
|
||
|
>>> sigmoid_function(3.5)
|
||
|
0.9706877692486436
|
||
|
>>> sigmoid_function(3.5, True)
|
||
|
-8.75
|
||
|
"""
|
||
|
if deriv:
|
||
|
return value * (1 - value)
|
||
|
return 1 / (1 + math.exp(-value))
|
||
|
|
||
|
|
||
|
# Initial Value
|
||
|
INITIAL_VALUE = 0.02
|
||
|
|
||
|
|
||
|
def forward_propagation(expected: int, number_propagations: int) -> float:
|
||
|
"""Return the value found after the forward propagation training.
|
||
|
|
||
|
>>> res = forward_propagation(32, 10000000)
|
||
|
>>> res > 31 and res < 33
|
||
|
True
|
||
|
|
||
|
>>> res = forward_propagation(32, 1000)
|
||
|
>>> res > 31 and res < 33
|
||
|
False
|
||
|
"""
|
||
|
|
||
|
# Random weight
|
||
|
weight = float(2 * (random.randint(1, 100)) - 1)
|
||
|
|
||
|
for _ in range(number_propagations):
|
||
|
# Forward propagation
|
||
|
layer_1 = sigmoid_function(INITIAL_VALUE * weight)
|
||
|
# How much did we miss?
|
||
|
layer_1_error = (expected / 100) - layer_1
|
||
|
# Error delta
|
||
|
layer_1_delta = layer_1_error * sigmoid_function(layer_1, True)
|
||
|
# Update weight
|
||
|
weight += INITIAL_VALUE * layer_1_delta
|
||
|
|
||
|
return layer_1 * 100
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
import doctest
|
||
|
|
||
|
doctest.testmod()
|
||
|
|
||
|
expected = int(input("Expected value: "))
|
||
|
number_propagations = int(input("Number of propagations: "))
|
||
|
print(forward_propagation(expected, number_propagations))
|