Python/dynamic_programming/edit_distance.py

75 lines
2.0 KiB
Python
Raw Normal View History

2017-10-24 20:07:11 +00:00
"""
Author : Turfa Auliarachman
Date : October 12, 2016
This is a pure Python implementation of Dynamic Programming solution to the edit distance problem.
The problem is :
Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution.
"""
class EditDistance:
"""
Use :
solver = EditDistance()
editDistanceResult = solver.solve(firstString, secondString)
"""
def __init__(self):
self.__prepare__()
def __prepare__(self, N = 0, M = 0):
self.dp = [[-1 for y in range(0,M)] for x in range(0,N)]
def __solveDP(self, x, y):
if (x==-1):
return y+1
elif (y==-1):
return x+1
elif (self.dp[x][y]>-1):
return self.dp[x][y]
else:
if (self.A[x]==self.B[y]):
self.dp[x][y] = self.__solveDP(x-1,y-1)
else:
self.dp[x][y] = 1+min(self.__solveDP(x,y-1), self.__solveDP(x-1,y), self.__solveDP(x-1,y-1))
return self.dp[x][y]
def solve(self, A, B):
if isinstance(A,bytes):
A = A.decode('ascii')
if isinstance(B,bytes):
B = B.decode('ascii')
self.A = str(A)
self.B = str(B)
self.__prepare__(len(A), len(B))
return self.__solveDP(len(A)-1, len(B)-1)
if __name__ == '__main__':
import sys
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
solver = EditDistance()
print("****************** Testing Edit Distance DP Algorithm ******************")
print()
print("Enter the first string: ", end="")
S1 = input_function()
print("Enter the second string: ", end="")
S2 = input_function()
print()
print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2)))
print()
print("*************** End of Testing Edit Distance DP Algorithm ***************")