mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Added Dequeue in Python
This commit is contained in:
commit
9bc80eac2d
91
.gitignore
vendored
Normal file
91
.gitignore
vendored
Normal file
|
@ -0,0 +1,91 @@
|
|||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
env/
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*,cover
|
||||
.hypothesis/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# IPython Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# celery beat schedule file
|
||||
celerybeat-schedule
|
||||
|
||||
# dotenv
|
||||
.env
|
||||
|
||||
# virtualenv
|
||||
venv/
|
||||
ENV/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
.idea
|
||||
.DS_Store
|
101
Graphs/a_star.py
Normal file
101
Graphs/a_star.py
Normal file
|
@ -0,0 +1,101 @@
|
|||
|
||||
grid = [[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
|
||||
[0, 1, 0, 0, 0, 0],
|
||||
[0, 1, 0, 0, 1, 0],
|
||||
[0, 0, 0, 0, 1, 0]]
|
||||
|
||||
'''
|
||||
heuristic = [[9, 8, 7, 6, 5, 4],
|
||||
[8, 7, 6, 5, 4, 3],
|
||||
[7, 6, 5, 4, 3, 2],
|
||||
[6, 5, 4, 3, 2, 1],
|
||||
[5, 4, 3, 2, 1, 0]]'''
|
||||
|
||||
init = [0, 0]
|
||||
goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
|
||||
cost = 1
|
||||
|
||||
#the cost map which pushes the path closer to the goal
|
||||
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
|
||||
for i in range(len(grid)):
|
||||
for j in range(len(grid[0])):
|
||||
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
|
||||
if grid[i][j] == 1:
|
||||
heuristic[i][j] = 99 #added extra penalty in the heuristic map
|
||||
|
||||
|
||||
#the actions we can take
|
||||
delta = [[-1, 0 ], # go up
|
||||
[ 0, -1], # go left
|
||||
[ 1, 0 ], # go down
|
||||
[ 0, 1 ]] # go right
|
||||
|
||||
|
||||
#function to search the path
|
||||
def search(grid,init,goal,cost,heuristic):
|
||||
|
||||
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
|
||||
closed[init[0]][init[1]] = 1
|
||||
action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
|
||||
|
||||
x = init[0]
|
||||
y = init[1]
|
||||
g = 0
|
||||
f = g + heuristic[init[0]][init[0]]
|
||||
cell = [[f, g, x, y]]
|
||||
|
||||
found = False # flag that is set when search is complete
|
||||
resign = False # flag set if we can't find expand
|
||||
|
||||
while not found and not resign:
|
||||
if len(cell) == 0:
|
||||
resign = True
|
||||
return "FAIL"
|
||||
else:
|
||||
cell.sort()#to choose the least costliest action so as to move closer to the goal
|
||||
cell.reverse()
|
||||
next = cell.pop()
|
||||
x = next[2]
|
||||
y = next[3]
|
||||
g = next[1]
|
||||
f = next[0]
|
||||
|
||||
|
||||
if x == goal[0] and y == goal[1]:
|
||||
found = True
|
||||
else:
|
||||
for i in range(len(delta)):#to try out different valid actions
|
||||
x2 = x + delta[i][0]
|
||||
y2 = y + delta[i][1]
|
||||
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
|
||||
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
|
||||
g2 = g + cost
|
||||
f2 = g2 + heuristic[x2][y2]
|
||||
cell.append([f2, g2, x2, y2])
|
||||
closed[x2][y2] = 1
|
||||
action[x2][y2] = i
|
||||
invpath = []
|
||||
x = goal[0]
|
||||
y = goal[1]
|
||||
invpath.append([x, y])#we get the reverse path from here
|
||||
while x != init[0] or y != init[1]:
|
||||
x2 = x - delta[action[x][y]][0]
|
||||
y2 = y - delta[action[x][y]][1]
|
||||
x = x2
|
||||
y = y2
|
||||
invpath.append([x, y])
|
||||
|
||||
path = []
|
||||
for i in range(len(invpath)):
|
||||
path.append(invpath[len(invpath) - 1 - i])
|
||||
print "ACTION MAP"
|
||||
for i in range(len(action)):
|
||||
print action[i]
|
||||
|
||||
return path
|
||||
|
||||
a = search(grid,init,goal,cost,heuristic)
|
||||
for i in range(len(a)):
|
||||
print a[i]
|
||||
|
267
Graphs/basic-graphs.py
Normal file
267
Graphs/basic-graphs.py
Normal file
|
@ -0,0 +1,267 @@
|
|||
# Accept No. of Nodes and edges
|
||||
n, m = map(int, raw_input().split(" "))
|
||||
|
||||
# Initialising Dictionary of edges
|
||||
g = {}
|
||||
for i in xrange(n):
|
||||
g[i + 1] = []
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Directed Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().split(" "))
|
||||
g[x].append(y)
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Unweighted Undirected Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y = map(int, raw_input().split(" "))
|
||||
g[x].append(y)
|
||||
g[y].append(x)
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting edges of Weighted Undirected Graphs
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
for _ in xrange(m):
|
||||
x, y, r = map(int, raw_input().split(" "))
|
||||
g[x].append([y, r])
|
||||
g[y].append([x, r])
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Depth First Search.
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : vis - Set of visited nodes
|
||||
S - Traversal Stack
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def dfs(G, s):
|
||||
vis, S = set([s]), [s]
|
||||
print s
|
||||
while S:
|
||||
flag = 0
|
||||
for i in G[S[-1]]:
|
||||
if i not in vis:
|
||||
S.append(i)
|
||||
vis.add(i)
|
||||
flag = 1
|
||||
print i
|
||||
break
|
||||
if not flag:
|
||||
S.pop()
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Breadth First Search.
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : vis - Set of visited nodes
|
||||
Q - Traveral Stack
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
from collections import deque
|
||||
|
||||
|
||||
def bfs(G, s):
|
||||
vis, Q = set([s]), deque([s])
|
||||
print s
|
||||
while Q:
|
||||
u = Q.popleft()
|
||||
for v in G[u]:
|
||||
if v not in vis:
|
||||
vis.add(v)
|
||||
Q.append(v)
|
||||
print v
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Dijkstra's shortest path Algorithm
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : dist - Dictionary storing shortest distance from s to every other node
|
||||
known - Set of knows nodes
|
||||
path - Preceding node in path
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def dijk(G, s):
|
||||
dist, known, path = {s: 0}, set(), {s: 0}
|
||||
while True:
|
||||
if len(known) == len(G) - 1:
|
||||
break
|
||||
mini = 100000
|
||||
for i in dist:
|
||||
if i not in known and dist[i] < mini:
|
||||
mini = dist[i]
|
||||
u = i
|
||||
known.add(u)
|
||||
for v in G[u]:
|
||||
if v[0] not in known:
|
||||
if dist[u] + v[1] < dist.get(v[0], 100000):
|
||||
dist[v[0]] = dist[u] + v[1]
|
||||
path[v[0]] = u
|
||||
for i in dist:
|
||||
if i != s:
|
||||
print dist[i]
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Topological Sort
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
from collections import deque
|
||||
|
||||
|
||||
def topo(G, ind=None, Q=[1]):
|
||||
if ind == None:
|
||||
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
|
||||
for u in G:
|
||||
for v in G[u]:
|
||||
ind[v] += 1
|
||||
Q = deque()
|
||||
for i in G:
|
||||
if ind[i] == 0:
|
||||
Q.append(i)
|
||||
if len(Q) == 0:
|
||||
return
|
||||
v = Q.popleft()
|
||||
print v
|
||||
for w in G[v]:
|
||||
ind[w] -= 1
|
||||
if ind[w] == 0:
|
||||
Q.append(w)
|
||||
topo(G, ind, Q)
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Reading an Adjacency matrix
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def adjm():
|
||||
n, a = input(), []
|
||||
for i in xrange(n):
|
||||
a.append(map(int, raw_input().split()))
|
||||
return a, n
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Floyd Warshall's algorithm
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : dist - Dictionary storing shortest distance from s to every other node
|
||||
known - Set of knows nodes
|
||||
path - Preceding node in path
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def floy((A, n)):
|
||||
dist = list(A)
|
||||
path = [[0] * n for i in xrange(n)]
|
||||
for k in xrange(n):
|
||||
for i in xrange(n):
|
||||
for j in xrange(n):
|
||||
if dist[i][j] > dist[i][k] + dist[k][j]:
|
||||
dist[i][j] = dist[i][k] + dist[k][j]
|
||||
path[i][k] = k
|
||||
print dist
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Prim's MST Algorithm
|
||||
Args : G - Dictionary of edges
|
||||
s - Starting Node
|
||||
Vars : dist - Dictionary storing shortest distance from s to nearest node
|
||||
known - Set of knows nodes
|
||||
path - Preceding node in path
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def prim(G, s):
|
||||
dist, known, path = {s: 0}, set(), {s: 0}
|
||||
while True:
|
||||
if len(known) == len(G) - 1:
|
||||
break
|
||||
mini = 100000
|
||||
for i in dist:
|
||||
if i not in known and dist[i] < mini:
|
||||
mini = dist[i]
|
||||
u = i
|
||||
known.add(u)
|
||||
for v in G[u]:
|
||||
if v[0] not in known:
|
||||
if v[1] < dist.get(v[0], 100000):
|
||||
dist[v[0]] = v[1]
|
||||
path[v[0]] = u
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Accepting Edge list
|
||||
Vars : n - Number of nodes
|
||||
m - Number of edges
|
||||
Returns : l - Edge list
|
||||
n - Number of Nodes
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def edglist():
|
||||
n, m = map(int, raw_input().split(" "))
|
||||
l = []
|
||||
for i in xrange(m):
|
||||
l.append(map(int, raw_input().split(' ')))
|
||||
return l, n
|
||||
|
||||
|
||||
"""
|
||||
--------------------------------------------------------------------------------
|
||||
Kruskal's MST Algorithm
|
||||
Args : E - Edge list
|
||||
n - Number of Nodes
|
||||
Vars : s - Set of all nodes as unique disjoint sets (initially)
|
||||
--------------------------------------------------------------------------------
|
||||
"""
|
||||
|
||||
|
||||
def krusk((E, n)):
|
||||
# Sort edges on the basis of distance
|
||||
E.sort(reverse=True, key=lambda x: x[2])
|
||||
s = [set([i]) for i in range(1, n + 1)]
|
||||
while True:
|
||||
if len(s) == 1:
|
||||
break
|
||||
print s
|
||||
x = E.pop()
|
||||
for i in xrange(len(s)):
|
||||
if x[0] in s[i]:
|
||||
break
|
||||
for j in xrange(len(s)):
|
||||
if x[1] in s[j]:
|
||||
if i == j:
|
||||
break
|
||||
s[j].update(s[i])
|
||||
s.pop(i)
|
||||
break
|
21
License
Normal file
21
License
Normal file
|
@ -0,0 +1,21 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2016 The Algorithms
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
305
Neural_Network/convolution_neural_network.py
Normal file
305
Neural_Network/convolution_neural_network.py
Normal file
|
@ -0,0 +1,305 @@
|
|||
#-*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
Name - - CNN - Convolution Neural Network For Photo Recognizing
|
||||
Goal - - Recognize Handing Writting Word Photo
|
||||
Detail:Total 5 layers neural network
|
||||
* Convolution layer
|
||||
* Pooling layer
|
||||
* Input layer layer of BP
|
||||
* Hiden layer of BP
|
||||
* Output layer of BP
|
||||
Author: Stephen Lee
|
||||
Github: 245885195@qq.com
|
||||
Date: 2017.9.20
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class CNN():
|
||||
|
||||
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
|
||||
'''
|
||||
:param conv1_get: [a,c,d],size, number, step of convolution kernel
|
||||
:param size_p1: pooling size
|
||||
:param bp_num1: units number of flatten layer
|
||||
:param bp_num2: units number of hidden layer
|
||||
:param bp_num3: units number of output layer
|
||||
:param rate_w: rate of weight learning
|
||||
:param rate_t: rate of threshold learning
|
||||
'''
|
||||
self.num_bp1 = bp_num1
|
||||
self.num_bp2 = bp_num2
|
||||
self.num_bp3 = bp_num3
|
||||
self.conv1 = conv1_get[:2]
|
||||
self.step_conv1 = conv1_get[2]
|
||||
self.size_pooling1 = size_p1
|
||||
self.rate_weight = rate_w
|
||||
self.rate_thre = rate_t
|
||||
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
|
||||
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
|
||||
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
|
||||
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
|
||||
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
|
||||
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
|
||||
|
||||
|
||||
def save_model(self,save_path):
|
||||
#save model dict with pickle
|
||||
import pickle
|
||||
model_dic = {'num_bp1':self.num_bp1,
|
||||
'num_bp2':self.num_bp2,
|
||||
'num_bp3':self.num_bp3,
|
||||
'conv1':self.conv1,
|
||||
'step_conv1':self.step_conv1,
|
||||
'size_pooling1':self.size_pooling1,
|
||||
'rate_weight':self.rate_weight,
|
||||
'rate_thre':self.rate_thre,
|
||||
'w_conv1':self.w_conv1,
|
||||
'wkj':self.wkj,
|
||||
'vji':self.vji,
|
||||
'thre_conv1':self.thre_conv1,
|
||||
'thre_bp2':self.thre_bp2,
|
||||
'thre_bp3':self.thre_bp3}
|
||||
with open(save_path, 'wb') as f:
|
||||
pickle.dump(model_dic, f)
|
||||
|
||||
print('Model saved: %s'% save_path)
|
||||
|
||||
@classmethod
|
||||
def ReadModel(cls,model_path):
|
||||
#read saved model
|
||||
import pickle
|
||||
with open(model_path, 'rb') as f:
|
||||
model_dic = pickle.load(f)
|
||||
|
||||
conv_get= model_dic.get('conv1')
|
||||
conv_get.append(model_dic.get('step_conv1'))
|
||||
size_p1 = model_dic.get('size_pooling1')
|
||||
bp1 = model_dic.get('num_bp1')
|
||||
bp2 = model_dic.get('num_bp2')
|
||||
bp3 = model_dic.get('num_bp3')
|
||||
r_w = model_dic.get('rate_weight')
|
||||
r_t = model_dic.get('rate_thre')
|
||||
#create model instance
|
||||
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
|
||||
#modify model parameter
|
||||
conv_ins.w_conv1 = model_dic.get('w_conv1')
|
||||
conv_ins.wkj = model_dic.get('wkj')
|
||||
conv_ins.vji = model_dic.get('vji')
|
||||
conv_ins.thre_conv1 = model_dic.get('thre_conv1')
|
||||
conv_ins.thre_bp2 = model_dic.get('thre_bp2')
|
||||
conv_ins.thre_bp3 = model_dic.get('thre_bp3')
|
||||
return conv_ins
|
||||
|
||||
|
||||
def sig(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def do_round(self,x):
|
||||
return round(x, 3)
|
||||
|
||||
def convolute(self,data,convs,w_convs,thre_convs,conv_step):
|
||||
#convolution process
|
||||
size_conv = convs[0]
|
||||
num_conv =convs[1]
|
||||
size_data = np.shape(data)[0]
|
||||
#get the data slice of original image data, data_focus
|
||||
data_focus = []
|
||||
for i_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||
for j_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
|
||||
data_focus.append(focus)
|
||||
#caculate the feature map of every single kernel, and saved as list of matrix
|
||||
data_featuremap = []
|
||||
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
|
||||
for i_map in range(num_conv):
|
||||
featuremap = []
|
||||
for i_focus in range(len(data_focus)):
|
||||
net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
|
||||
featuremap.append(self.sig(net_focus))
|
||||
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
|
||||
data_featuremap.append(featuremap)
|
||||
|
||||
#expanding the data slice to One dimenssion
|
||||
focus1_list = []
|
||||
for each_focus in data_focus:
|
||||
focus1_list.extend(self.Expand_Mat(each_focus))
|
||||
focus_list = np.asarray(focus1_list)
|
||||
return focus_list,data_featuremap
|
||||
|
||||
def pooling(self,featuremaps,size_pooling,type='average_pool'):
|
||||
#pooling process
|
||||
size_map = len(featuremaps[0])
|
||||
size_pooled = int(size_map/size_pooling)
|
||||
featuremap_pooled = []
|
||||
for i_map in range(len(featuremaps)):
|
||||
map = featuremaps[i_map]
|
||||
map_pooled = []
|
||||
for i_focus in range(0,size_map,size_pooling):
|
||||
for j_focus in range(0, size_map, size_pooling):
|
||||
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
|
||||
if type == 'average_pool':
|
||||
#average pooling
|
||||
map_pooled.append(np.average(focus))
|
||||
elif type == 'max_pooling':
|
||||
#max pooling
|
||||
map_pooled.append(np.max(focus))
|
||||
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
|
||||
featuremap_pooled.append(map_pooled)
|
||||
return featuremap_pooled
|
||||
|
||||
def _expand(self,datas):
|
||||
#expanding three dimension data to one dimension list
|
||||
data_expanded = []
|
||||
for i in range(len(datas)):
|
||||
shapes = np.shape(datas[i])
|
||||
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
|
||||
data_listed = data_listed.getA().tolist()[0]
|
||||
data_expanded.extend(data_listed)
|
||||
data_expanded = np.asarray(data_expanded)
|
||||
return data_expanded
|
||||
|
||||
def _expand_mat(self,data_mat):
|
||||
#expanding matrix to one dimension list
|
||||
data_mat = np.asarray(data_mat)
|
||||
shapes = np.shape(data_mat)
|
||||
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
|
||||
return data_expanded
|
||||
|
||||
def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
|
||||
'''
|
||||
calcluate the gradient from the data slice of pool layer
|
||||
pd_pool: list of matrix
|
||||
out_map: the shape of data slice(size_map*size_map)
|
||||
return: pd_all: list of matrix, [num, size_map, size_map]
|
||||
'''
|
||||
pd_all = []
|
||||
i_pool = 0
|
||||
for i_map in range(num_map):
|
||||
pd_conv1 = np.ones((size_map, size_map))
|
||||
for i in range(0, size_map, size_pooling):
|
||||
for j in range(0, size_map, size_pooling):
|
||||
pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
|
||||
i_pool = i_pool + 1
|
||||
pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
|
||||
pd_all.append(pd_conv2)
|
||||
return pd_all
|
||||
|
||||
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
|
||||
#model traning
|
||||
print('----------------------Start Training-------------------------')
|
||||
print(' - - Shape: Train_Data ',np.shape(datas_train))
|
||||
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
|
||||
rp = 0
|
||||
all_mse = []
|
||||
mse = 10000
|
||||
while rp < n_repeat and mse >= error_accuracy:
|
||||
alle = 0
|
||||
print('-------------Learning Time %d--------------'%rp)
|
||||
for p in range(len(datas_train)):
|
||||
#print('------------Learning Image: %d--------------'%p)
|
||||
data_train = np.asmatrix(datas_train[p])
|
||||
data_teach = np.asarray(datas_teach[p])
|
||||
data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
|
||||
self.thre_conv1,conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
|
||||
shape_featuremap1 = np.shape(data_conved1)
|
||||
'''
|
||||
print(' -----original shape ', np.shape(data_train))
|
||||
print(' ---- after convolution ',np.shape(data_conv1))
|
||||
print(' -----after pooling ',np.shape(data_pooled1))
|
||||
'''
|
||||
data_bp_input = self._expand(data_pooled1)
|
||||
bp_out1 = data_bp_input
|
||||
|
||||
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
|
||||
bp_out2 = self.sig(bp_net_j)
|
||||
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
|
||||
bp_out3 = self.sig(bp_net_k)
|
||||
|
||||
#--------------Model Leaning ------------------------
|
||||
# calcluate error and gradient---------------
|
||||
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
|
||||
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
|
||||
pd_i_all = np.dot(pd_j_all,self.vji)
|
||||
|
||||
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
|
||||
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
|
||||
pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
|
||||
shape_featuremap1[1],self.size_pooling1)
|
||||
#weight and threshold learning process---------
|
||||
#convolution layer
|
||||
for k_conv in range(self.conv1[1]):
|
||||
pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
|
||||
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
|
||||
|
||||
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
|
||||
|
||||
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
|
||||
#all connected layer
|
||||
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
|
||||
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
|
||||
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
|
||||
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
|
||||
# calculate the sum error of all single image
|
||||
errors = np.sum(abs((data_teach - bp_out3)))
|
||||
alle = alle + errors
|
||||
#print(' ----Teach ',data_teach)
|
||||
#print(' ----BP_output ',bp_out3)
|
||||
rp = rp + 1
|
||||
mse = alle/patterns
|
||||
all_mse.append(mse)
|
||||
def draw_error():
|
||||
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
|
||||
plt.plot(all_mse, '+-')
|
||||
plt.plot(yplot, 'r--')
|
||||
plt.xlabel('Learning Times')
|
||||
plt.ylabel('All_mse')
|
||||
plt.grid(True, alpha=0.5)
|
||||
plt.show()
|
||||
print('------------------Training Complished---------------------')
|
||||
print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
|
||||
if draw_e:
|
||||
draw_error()
|
||||
return mse
|
||||
|
||||
def predict(self,datas_test):
|
||||
#model predict
|
||||
produce_out = []
|
||||
print('-------------------Start Testing-------------------------')
|
||||
print(' - - Shape: Test_Data ',np.shape(datas_test))
|
||||
for p in range(len(datas_test)):
|
||||
data_test = np.asmatrix(datas_test[p])
|
||||
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||
self.thre_conv1, conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||
data_bp_input = self._expand(data_pooled1)
|
||||
|
||||
bp_out1 = data_bp_input
|
||||
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
|
||||
bp_out2 = self.sig(bp_net_j)
|
||||
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
|
||||
bp_out3 = self.sig(bp_net_k)
|
||||
produce_out.extend(bp_out3.getA().tolist())
|
||||
res = [list(map(self.do_round,each)) for each in produce_out]
|
||||
return np.asarray(res)
|
||||
|
||||
def convolution(self,data):
|
||||
#return the data of image after convoluting process so we can check it out
|
||||
data_test = np.asmatrix(data)
|
||||
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||
self.thre_conv1, conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||
|
||||
return data_conved1,data_pooled1
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
'''
|
||||
I will put the example on other file
|
||||
'''
|
152
Neural_Network/neuralnetwork_bp3.py
Normal file
152
Neural_Network/neuralnetwork_bp3.py
Normal file
|
@ -0,0 +1,152 @@
|
|||
#-*- coding:utf-8 -*-
|
||||
'''
|
||||
Author: Stephen Lee
|
||||
Date: 2017.9.21
|
||||
|
||||
BP neural network with three layers
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class Bpnn():
|
||||
|
||||
def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3):
|
||||
'''
|
||||
:param n_layer1: number of input layer
|
||||
:param n_layer2: number of hiden layer
|
||||
:param n_layer3: number of output layer
|
||||
:param rate_w: rate of weight learning
|
||||
:param rate_t: rate of threshold learning
|
||||
'''
|
||||
self.num1 = n_layer1
|
||||
self.num2 = n_layer2
|
||||
self.num3 = n_layer3
|
||||
self.rate_weight = rate_w
|
||||
self.rate_thre = rate_t
|
||||
self.thre2 = -2*np.random.rand(self.num2)+1
|
||||
self.thre3 = -2*np.random.rand(self.num3)+1
|
||||
self.vji = np.mat(-2*np.random.rand(self.num2, self.num1)+1)
|
||||
self.wkj = np.mat(-2*np.random.rand(self.num3, self.num2)+1)
|
||||
|
||||
def sig(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def sig_plain(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def do_round(self,x):
|
||||
return round(x, 3)
|
||||
|
||||
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e=False):
|
||||
'''
|
||||
:param patterns: the number of patterns
|
||||
:param data_train: training data x; numpy.ndarray
|
||||
:param data_teach: training data y; numpy.ndarray
|
||||
:param n_repeat: echoes
|
||||
:param error_accuracy: error accuracy
|
||||
:return: None
|
||||
'''
|
||||
data_train = np.asarray(data_train)
|
||||
data_teach = np.asarray(data_teach)
|
||||
# print('-------------------Start Training-------------------------')
|
||||
# print(' - - Shape: Train_Data ',np.shape(data_train))
|
||||
# print(' - - Shape: Teach_Data ',np.shape(data_teach))
|
||||
rp = 0
|
||||
all_mse = []
|
||||
mse = 10000
|
||||
while rp < n_repeat and mse >= error_accuracy:
|
||||
alle = 0
|
||||
final_out = []
|
||||
for g in range(np.shape(data_train)[0]):
|
||||
net_i = data_train[g]
|
||||
out1 = net_i
|
||||
|
||||
net_j = out1 * self.vji.T - self.thre2
|
||||
out2=self.sig(net_j)
|
||||
|
||||
net_k = out2 * self.wkj.T - self.thre3
|
||||
out3 = self.sig(net_k)
|
||||
|
||||
# learning process
|
||||
pd_k_all = np.multiply(np.multiply(out3,(1 - out3)),(data_teach[g]-out3))
|
||||
pd_j_all = np.multiply(pd_k_all * self.wkj,np.multiply(out2,1-out2))
|
||||
#upgrade weight
|
||||
self.wkj = self.wkj + pd_k_all.T * out2 *self.rate_weight
|
||||
self.vji = self.vji + pd_j_all.T * out1 * self.rate_weight
|
||||
#upgrade threshold
|
||||
self.thre3 = self.thre3 - pd_k_all * self.rate_thre
|
||||
self.thre2 = self.thre2 - pd_j_all * self.rate_thre
|
||||
#calculate sum of error
|
||||
errors = np.sum(abs((data_teach[g] - out3)))
|
||||
|
||||
alle = alle + errors
|
||||
final_out.extend(out3.getA().tolist())
|
||||
final_out3 = [list(map(self.do_round,each)) for each in final_out]
|
||||
|
||||
rp = rp + 1
|
||||
mse = alle/patterns
|
||||
all_mse.append(mse)
|
||||
def draw_error():
|
||||
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
|
||||
plt.plot(all_mse, '+-')
|
||||
plt.plot(yplot, 'r--')
|
||||
plt.xlabel('Learning Times')
|
||||
plt.ylabel('All_mse')
|
||||
plt.grid(True,alpha = 0.7)
|
||||
plt.show()
|
||||
# print('------------------Training Complished---------------------')
|
||||
# print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
|
||||
# print(' - - Last Output: ', final_out3)
|
||||
if draw_e:
|
||||
draw_error()
|
||||
|
||||
def predict(self,data_test):
|
||||
'''
|
||||
:param data_test: data test, numpy.ndarray
|
||||
:return: predict output data
|
||||
'''
|
||||
data_test = np.asarray(data_test)
|
||||
produce_out = []
|
||||
# print('-------------------Start Testing-------------------------')
|
||||
# print(' - - Shape: Test_Data ',np.shape(data_test))
|
||||
# print(np.shape(data_test))
|
||||
for g in range(np.shape(data_test)[0]):
|
||||
|
||||
net_i = data_test[g]
|
||||
out1 = net_i
|
||||
|
||||
net_j = out1 * self.vji.T - self.thre2
|
||||
out2 = self.sig(net_j)
|
||||
|
||||
net_k = out2 * self.wkj.T - self.thre3
|
||||
out3 = self.sig(net_k)
|
||||
produce_out.extend(out3.getA().tolist())
|
||||
res = [list(map(self.do_round,each)) for each in produce_out]
|
||||
return np.asarray(res)
|
||||
|
||||
|
||||
def main():
|
||||
#example data
|
||||
data_x = [[1,2,3,4],
|
||||
[5,6,7,8],
|
||||
[2,2,3,4],
|
||||
[7,7,8,8]]
|
||||
data_y = [[1,0,0,0],
|
||||
[0,1,0,0],
|
||||
[0,0,1,0],
|
||||
[0,0,0,1]]
|
||||
|
||||
test_x = [[1,2,3,4],
|
||||
[3,2,3,4]]
|
||||
|
||||
#building network model
|
||||
model = Bpnn(4,10,4)
|
||||
#training the model
|
||||
model.trian(patterns=4,data_train=data_x,data_teach=data_y,
|
||||
n_repeat=100,error_accuracy=0.1,draw_e=True)
|
||||
#predicting data
|
||||
model.predict(test_x)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
123
Neural_Network/perceptron.py
Normal file
123
Neural_Network/perceptron.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
'''
|
||||
|
||||
Perceptron
|
||||
w = w + N * (d(k) - y) * x(k)
|
||||
|
||||
Using perceptron network for oil analysis,
|
||||
with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2
|
||||
p1 = -1
|
||||
p2 = 1
|
||||
|
||||
'''
|
||||
|
||||
import random
|
||||
|
||||
|
||||
class Perceptron:
|
||||
def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1):
|
||||
self.sample = sample
|
||||
self.exit = exit
|
||||
self.learn_rate = learn_rate
|
||||
self.epoch_number = epoch_number
|
||||
self.bias = bias
|
||||
self.number_sample = len(sample)
|
||||
self.col_sample = len(sample[0])
|
||||
self.weight = []
|
||||
|
||||
def trannig(self):
|
||||
for sample in self.sample:
|
||||
sample.insert(0, self.bias)
|
||||
|
||||
for i in range(self.col_sample):
|
||||
self.weight.append(random.random())
|
||||
|
||||
self.weight.insert(0, self.bias)
|
||||
|
||||
epoch_count = 0
|
||||
|
||||
while True:
|
||||
erro = False
|
||||
for i in range(self.number_sample):
|
||||
u = 0
|
||||
for j in range(self.col_sample + 1):
|
||||
u = u + self.weight[j] * self.sample[i][j]
|
||||
y = self.sign(u)
|
||||
if y != self.exit[i]:
|
||||
|
||||
for j in range(self.col_sample + 1):
|
||||
|
||||
self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j]
|
||||
erro = True
|
||||
#print('Epoch: \n',epoch_count)
|
||||
epoch_count = epoch_count + 1
|
||||
# if you want controle the epoch or just by erro
|
||||
if erro == False:
|
||||
print('\nEpoch:\n',epoch_count)
|
||||
print('------------------------\n')
|
||||
#if epoch_count > self.epoch_number or not erro:
|
||||
break
|
||||
|
||||
def sort(self, sample):
|
||||
sample.insert(0, self.bias)
|
||||
u = 0
|
||||
for i in range(self.col_sample + 1):
|
||||
u = u + self.weight[i] * sample[i]
|
||||
|
||||
y = self.sign(u)
|
||||
|
||||
if y == -1:
|
||||
print('Sample: ', sample)
|
||||
print('classification: P1')
|
||||
else:
|
||||
print('Sample: ', sample)
|
||||
print('classification: P2')
|
||||
|
||||
def sign(self, u):
|
||||
return 1 if u >= 0 else -1
|
||||
|
||||
|
||||
samples = [
|
||||
[-0.6508, 0.1097, 4.0009],
|
||||
[-1.4492, 0.8896, 4.4005],
|
||||
[2.0850, 0.6876, 12.0710],
|
||||
[0.2626, 1.1476, 7.7985],
|
||||
[0.6418, 1.0234, 7.0427],
|
||||
[0.2569, 0.6730, 8.3265],
|
||||
[1.1155, 0.6043, 7.4446],
|
||||
[0.0914, 0.3399, 7.0677],
|
||||
[0.0121, 0.5256, 4.6316],
|
||||
[-0.0429, 0.4660, 5.4323],
|
||||
[0.4340, 0.6870, 8.2287],
|
||||
[0.2735, 1.0287, 7.1934],
|
||||
[0.4839, 0.4851, 7.4850],
|
||||
[0.4089, -0.1267, 5.5019],
|
||||
[1.4391, 0.1614, 8.5843],
|
||||
[-0.9115, -0.1973, 2.1962],
|
||||
[0.3654, 1.0475, 7.4858],
|
||||
[0.2144, 0.7515, 7.1699],
|
||||
[0.2013, 1.0014, 6.5489],
|
||||
[0.6483, 0.2183, 5.8991],
|
||||
[-0.1147, 0.2242, 7.2435],
|
||||
[-0.7970, 0.8795, 3.8762],
|
||||
[-1.0625, 0.6366, 2.4707],
|
||||
[0.5307, 0.1285, 5.6883],
|
||||
[-1.2200, 0.7777, 1.7252],
|
||||
[0.3957, 0.1076, 5.6623],
|
||||
[-0.1013, 0.5989, 7.1812],
|
||||
[2.4482, 0.9455, 11.2095],
|
||||
[2.0149, 0.6192, 10.9263],
|
||||
[0.2012, 0.2611, 5.4631]
|
||||
|
||||
]
|
||||
|
||||
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
|
||||
|
||||
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
|
||||
|
||||
network.trannig()
|
||||
|
||||
while True:
|
||||
sample = []
|
||||
for i in range(3):
|
||||
sample.insert(i, float(input('value: ')))
|
||||
network.sort(sample)
|
174
README.md
Normal file
174
README.md
Normal file
|
@ -0,0 +1,174 @@
|
|||
# The Algorithms - Python <!-- [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python) -->
|
||||
|
||||
### All algorithms implemented in Python (for education)
|
||||
|
||||
These are for demonstration purposes only. There are many implementations of sorts in the Python standard library that are much better for performance reasons.
|
||||
|
||||
## Sort Algorithms
|
||||
|
||||
|
||||
### Bubble
|
||||
![alt text][bubble-image]
|
||||
|
||||
From [Wikipedia][bubble-wiki]: Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly steps through the list to be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(n^2)
|
||||
* Best case performance O(n)
|
||||
* Average case performance O(n^2)
|
||||
|
||||
###### View the algorithm in [action][bubble-toptal]
|
||||
|
||||
|
||||
|
||||
### Insertion
|
||||
![alt text][insertion-image]
|
||||
|
||||
From [Wikipedia][insertion-wiki]: Insertion sort is a simple sorting algorithm that builds the final sorted array (or list) one item at a time. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(n^2)
|
||||
* Best case performance O(n)
|
||||
* Average case performance O(n^2)
|
||||
|
||||
###### View the algorithm in [action][insertion-toptal]
|
||||
|
||||
|
||||
### Merge
|
||||
![alt text][merge-image]
|
||||
|
||||
From [Wikipedia][merge-wiki]: In computer science, merge sort (also commonly spelled mergesort) is an efficient, general-purpose, comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the implementation preserves the input order of equal elements in the sorted output. Mergesort is a divide and conquer algorithm that was invented by John von Neumann in 1945.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(n log n)
|
||||
* Best case performance O(n)
|
||||
* Average case performance O(n)
|
||||
|
||||
|
||||
###### View the algorithm in [action][merge-toptal]
|
||||
|
||||
### Quick
|
||||
![alt text][quick-image]
|
||||
|
||||
From [Wikipedia][quick-wiki]: Quicksort (sometimes called partition-exchange sort) is an efficient sorting algorithm, serving as a systematic method for placing the elements of an array in order.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(n^2)
|
||||
* Best case performance O(n log n) or O(n) with three-way partition
|
||||
* Average case performance O(n^2)
|
||||
|
||||
###### View the algorithm in [action][quick-toptal]
|
||||
|
||||
### Selection
|
||||
![alt text][selection-image]
|
||||
|
||||
From [Wikipedia][selection-wiki]: The algorithm divides the input list into two parts: the sublist of items already sorted, which is built up from left to right at the front (left) of the list, and the sublist of items remaining to be sorted that occupy the rest of the list. Initially, the sorted sublist is empty and the unsorted sublist is the entire input list. The algorithm proceeds by finding the smallest (or largest, depending on sorting order) element in the unsorted sublist, exchanging (swapping) it with the leftmost unsorted element (putting it in sorted order), and moving the sublist boundaries one element to the right.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(n^2)
|
||||
* Best case performance O(n^2)
|
||||
* Average case performance O(n^2)
|
||||
|
||||
###### View the algorithm in [action][selection-toptal]
|
||||
|
||||
### Shell
|
||||
![alt text][shell-image]
|
||||
|
||||
From [Wikipedia][shell-wiki]: Shellsort is a generalization of insertion sort that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, considering every nth element gives a sorted list. Such a list is said to be h-sorted. Equivalently, it can be thought of as h interleaved lists, each individually sorted.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(nlog2 2n)
|
||||
* Best case performance O(n log n)
|
||||
* Average case performance depends on gap sequence
|
||||
|
||||
###### View the algorithm in [action][shell-toptal]
|
||||
|
||||
### Time-Compexity Graphs
|
||||
|
||||
Comparing the complexity of sorting algorithms (Bubble Sort, Insertion Sort, Selection Sort)
|
||||
|
||||
[Complexity Graphs](https://github.com/prateekiiest/Python/blob/master/sorts/sortinggraphs.png)
|
||||
|
||||
----------------------------------------------------------------------------------
|
||||
|
||||
## Search Algorithms
|
||||
|
||||
### Linear
|
||||
![alt text][linear-image]
|
||||
|
||||
From [Wikipedia][linear-wiki]: linear search or sequential search is a method for finding a target value within a list. It sequentially checks each element of the list for the target value until a match is found or until all the elements have been searched.
|
||||
Linear search runs in at worst linear time and makes at most n comparisons, where n is the length of the list.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(n)
|
||||
* Best case performance O(1)
|
||||
* Average case performance O(n)
|
||||
* Worst case space complexity O(1) iterative
|
||||
|
||||
### Binary
|
||||
![alt text][binary-image]
|
||||
|
||||
From [Wikipedia][binary-wiki]: Binary search, also known as half-interval search or logarithmic search, is a search algorithm that finds the position of a target value within a sorted array. It compares the target value to the middle element of the array; if they are unequal, the half in which the target cannot lie is eliminated and the search continues on the remaining half until it is successful.
|
||||
|
||||
__Properties__
|
||||
* Worst case performance O(log n)
|
||||
* Best case performance O(1)
|
||||
* Average case performance O(log n)
|
||||
* Worst case space complexity O(1)
|
||||
|
||||
----------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
## Ciphers
|
||||
|
||||
### Caesar
|
||||
![alt text][caesar]<br>
|
||||
In cryptography, a **Caesar cipher**, also known as Caesar's cipher, the shift cipher, Caesar's code or Caesar shift, is one of the simplest and most widely known encryption techniques.<br>
|
||||
It is **a type of substitution cipher** in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet. For example, with a left shift of 3, D would be replaced by A, E would become B, and so on. <br>
|
||||
The method is named after **Julius Caesar**, who used it in his private correspondence.<br>
|
||||
The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communication security.
|
||||
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Caesar_cipher)
|
||||
|
||||
### Vigenère
|
||||
The **Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.<br>
|
||||
The Vigenère cipher has been reinvented many times. The method was originally described by Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as the "Vigenère cipher".<br>
|
||||
Though the cipher is easy to understand and implement, for three centuries it resisted all attempts to break it; this earned it the description **le chiffre indéchiffrable**(French for 'the indecipherable cipher').
|
||||
Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. Friedrich Kasiski was the first to publish a general method of deciphering a Vigenère cipher in 1863.
|
||||
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher)
|
||||
|
||||
### Transposition
|
||||
In cryptography, a **transposition cipher** is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).<br>
|
||||
Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt.
|
||||
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Transposition_cipher)
|
||||
|
||||
[bubble-toptal]: https://www.toptal.com/developers/sorting-algorithms/bubble-sort
|
||||
[bubble-wiki]: https://en.wikipedia.org/wiki/Bubble_sort
|
||||
[bubble-image]: https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Bubblesort-edited-color.svg/220px-Bubblesort-edited-color.svg.png "Bubble Sort"
|
||||
|
||||
[insertion-toptal]: https://www.toptal.com/developers/sorting-algorithms/insertion-sort
|
||||
[insertion-wiki]: https://en.wikipedia.org/wiki/Insertion_sort
|
||||
[insertion-image]: https://upload.wikimedia.org/wikipedia/commons/7/7e/Insertionsort-edited.png "Insertion Sort"
|
||||
|
||||
[quick-toptal]: https://www.toptal.com/developers/sorting-algorithms/quick-sort
|
||||
[quick-wiki]: https://en.wikipedia.org/wiki/Quicksort
|
||||
[quick-image]: https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif "Quick Sort"
|
||||
|
||||
[merge-toptal]: https://www.toptal.com/developers/sorting-algorithms/merge-sort
|
||||
[merge-wiki]: https://en.wikipedia.org/wiki/Merge_sort
|
||||
[merge-image]: https://upload.wikimedia.org/wikipedia/commons/c/cc/Merge-sort-example-300px.gif "Merge Sort"
|
||||
|
||||
[selection-toptal]: https://www.toptal.com/developers/sorting-algorithms/selection-sort
|
||||
[selection-wiki]: https://en.wikipedia.org/wiki/Selection_sort
|
||||
[selection-image]: https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Selection_sort_animation.gif/250px-Selection_sort_animation.gif "Selection Sort Sort"
|
||||
|
||||
[shell-toptal]: https://www.toptal.com/developers/sorting-algorithms/shell-sort
|
||||
[shell-wiki]: https://en.wikipedia.org/wiki/Shellsort
|
||||
[shell-image]: https://upload.wikimedia.org/wikipedia/commons/d/d8/Sorting_shellsort_anim.gif "Shell Sort"
|
||||
|
||||
[linear-wiki]: https://en.wikipedia.org/wiki/Linear_search
|
||||
[linear-image]: http://www.tutorialspoint.com/data_structures_algorithms/images/linear_search.gif
|
||||
|
||||
[binary-wiki]: https://en.wikipedia.org/wiki/Binary_search_algorithm
|
||||
[binary-image]: https://upload.wikimedia.org/wikipedia/commons/f/f7/Binary_search_into_array.png
|
||||
|
||||
|
||||
[caesar]: https://upload.wikimedia.org/wikipedia/commons/4/4a/Caesar_cipher_left_shift_of_3.svg
|
7193
ciphers/Prehistoric Men.txt
Normal file
7193
ciphers/Prehistoric Men.txt
Normal file
File diff suppressed because it is too large
Load Diff
76
ciphers/affine_cipher.py
Normal file
76
ciphers/affine_cipher.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
import sys, random, cryptomath_module as cryptoMath
|
||||
|
||||
SYMBOLS = """ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~"""
|
||||
|
||||
def main():
|
||||
message = input('Enter message: ')
|
||||
key = int(input('Enter key [2000 - 9000]: '))
|
||||
mode = input('Encrypt/Decrypt [E/D]: ')
|
||||
|
||||
if mode.lower().startswith('e'):
|
||||
mode = 'encrypt'
|
||||
translated = encryptMessage(key, message)
|
||||
elif mode.lower().startswith('d'):
|
||||
mode = 'decrypt'
|
||||
translated = decryptMessage(key, message)
|
||||
print('\n%sed text: \n%s' % (mode.title(), translated))
|
||||
|
||||
def getKeyParts(key):
|
||||
keyA = key // len(SYMBOLS)
|
||||
keyB = key % len(SYMBOLS)
|
||||
return (keyA, keyB)
|
||||
|
||||
def checkKeys(keyA, keyB, mode):
|
||||
if keyA == 1 and mode == 'encrypt':
|
||||
sys.exit('The affine cipher becomes weak when key A is set to 1. Choose different key')
|
||||
if keyB == 0 and mode == 'encrypt':
|
||||
sys.exit('The affine cipher becomes weak when key A is set to 1. Choose different key')
|
||||
if keyA < 0 or keyB < 0 or keyB > len(SYMBOLS) - 1:
|
||||
sys.exit('Key A must be greater than 0 and key B must be between 0 and %s.' % (len(SYMBOLS) - 1))
|
||||
if cryptoMath.gcd(keyA, len(SYMBOLS)) != 1:
|
||||
sys.exit('Key A %s and the symbol set size %s are not relatively prime. Choose a different key.' % (keyA, len(SYMBOLS)))
|
||||
|
||||
def encryptMessage(key, message):
|
||||
'''
|
||||
>>> encryptMessage(4545, 'The affine cipher is a type of monoalphabetic substitution cipher.')
|
||||
'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi'
|
||||
'''
|
||||
keyA, keyB = getKeyParts(key)
|
||||
checkKeys(keyA, keyB, 'encrypt')
|
||||
cipherText = ''
|
||||
for symbol in message:
|
||||
if symbol in SYMBOLS:
|
||||
symIndex = SYMBOLS.find(symbol)
|
||||
cipherText += SYMBOLS[(symIndex * keyA + keyB) % len(SYMBOLS)]
|
||||
else:
|
||||
cipherText += symbol
|
||||
return cipherText
|
||||
|
||||
def decryptMessage(key, message):
|
||||
'''
|
||||
>>> decryptMessage(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi')
|
||||
'The affine cipher is a type of monoalphabetic substitution cipher.'
|
||||
'''
|
||||
keyA, keyB = getKeyParts(key)
|
||||
checkKeys(keyA, keyB, 'decrypt')
|
||||
plainText = ''
|
||||
modInverseOfkeyA = cryptoMath.findModInverse(keyA, len(SYMBOLS))
|
||||
for symbol in message:
|
||||
if symbol in SYMBOLS:
|
||||
symIndex = SYMBOLS.find(symbol)
|
||||
plainText += SYMBOLS[(symIndex - keyB) * modInverseOfkeyA % len(SYMBOLS)]
|
||||
else:
|
||||
plainText += symbol
|
||||
return plainText
|
||||
|
||||
def getRandomKey():
|
||||
while True:
|
||||
keyA = random.randint(2, len(SYMBOLS))
|
||||
keyB = random.randint(2, len(SYMBOLS))
|
||||
if cryptoMath.gcd(keyA, len(SYMBOLS)) == 1:
|
||||
return keyA * len(SYMBOLS) + keyB
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
main()
|
53
ciphers/brute-force_caesar_cipher.py
Normal file
53
ciphers/brute-force_caesar_cipher.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
def decrypt(message):
|
||||
"""
|
||||
>>> decrypt('TMDETUX PMDVU')
|
||||
Decryption using Key #0: TMDETUX PMDVU
|
||||
Decryption using Key #1: SLCDSTW OLCUT
|
||||
Decryption using Key #2: RKBCRSV NKBTS
|
||||
Decryption using Key #3: QJABQRU MJASR
|
||||
Decryption using Key #4: PIZAPQT LIZRQ
|
||||
Decryption using Key #5: OHYZOPS KHYQP
|
||||
Decryption using Key #6: NGXYNOR JGXPO
|
||||
Decryption using Key #7: MFWXMNQ IFWON
|
||||
Decryption using Key #8: LEVWLMP HEVNM
|
||||
Decryption using Key #9: KDUVKLO GDUML
|
||||
Decryption using Key #10: JCTUJKN FCTLK
|
||||
Decryption using Key #11: IBSTIJM EBSKJ
|
||||
Decryption using Key #12: HARSHIL DARJI
|
||||
Decryption using Key #13: GZQRGHK CZQIH
|
||||
Decryption using Key #14: FYPQFGJ BYPHG
|
||||
Decryption using Key #15: EXOPEFI AXOGF
|
||||
Decryption using Key #16: DWNODEH ZWNFE
|
||||
Decryption using Key #17: CVMNCDG YVMED
|
||||
Decryption using Key #18: BULMBCF XULDC
|
||||
Decryption using Key #19: ATKLABE WTKCB
|
||||
Decryption using Key #20: ZSJKZAD VSJBA
|
||||
Decryption using Key #21: YRIJYZC URIAZ
|
||||
Decryption using Key #22: XQHIXYB TQHZY
|
||||
Decryption using Key #23: WPGHWXA SPGYX
|
||||
Decryption using Key #24: VOFGVWZ ROFXW
|
||||
Decryption using Key #25: UNEFUVY QNEWV
|
||||
"""
|
||||
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
for key in range(len(LETTERS)):
|
||||
translated = ""
|
||||
for symbol in message:
|
||||
if symbol in LETTERS:
|
||||
num = LETTERS.find(symbol)
|
||||
num = num - key
|
||||
if num < 0:
|
||||
num = num + len(LETTERS)
|
||||
translated = translated + LETTERS[num]
|
||||
else:
|
||||
translated = translated + symbol
|
||||
print("Decryption using Key #%s: %s" % (key, translated))
|
||||
|
||||
def main():
|
||||
message = input("Encrypted message: ")
|
||||
message = message.upper()
|
||||
decrypt(message)
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
main()
|
44
ciphers/caesar_cipher.py
Normal file
44
ciphers/caesar_cipher.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
# The Caesar Cipher Algorithm
|
||||
|
||||
def main():
|
||||
message = input("Enter message: ")
|
||||
key = int(input("Key [1-26]: "))
|
||||
mode = input("Encrypt or Decrypt [e/d]: ")
|
||||
|
||||
if mode.lower().startswith('e'):
|
||||
mode = "encrypt"
|
||||
elif mode.lower().startswith('d'):
|
||||
mode = "decrypt"
|
||||
|
||||
translated = encdec(message, key, mode)
|
||||
if mode == "encrypt":
|
||||
print("Encryption:", translated)
|
||||
elif mode == "decrypt":
|
||||
print("Decryption:", translated)
|
||||
|
||||
def encdec(message, key, mode):
|
||||
message = message.upper()
|
||||
translated = ""
|
||||
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
for symbol in message:
|
||||
if symbol in LETTERS:
|
||||
num = LETTERS.find(symbol)
|
||||
if mode == "encrypt":
|
||||
num = num + key
|
||||
elif mode == "decrypt":
|
||||
num = num - key
|
||||
|
||||
if num >= len(LETTERS):
|
||||
num -= len(LETTERS)
|
||||
elif num < 0:
|
||||
num += len(LETTERS)
|
||||
|
||||
translated += LETTERS[num]
|
||||
else:
|
||||
translated += symbol
|
||||
return translated
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
main()
|
14
ciphers/cryptomath_module.py
Normal file
14
ciphers/cryptomath_module.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
def gcd(a, b):
|
||||
while a != 0:
|
||||
a, b = b % a, a
|
||||
return b
|
||||
|
||||
def findModInverse(a, m):
|
||||
if gcd(a, m) != 1:
|
||||
return None
|
||||
u1, u2, u3 = 1, 0, a
|
||||
v1, v2, v3 = 0, 1, m
|
||||
while v3 != 0:
|
||||
q = u3 // v3
|
||||
v1, v2, v3, u1, u2, u3 = (u1 - q * v1), (u2 - q * v2), (u3 - q *v3), v1, v2, v3
|
||||
return u1 % m
|
102
ciphers/playfair_cipher.py
Normal file
102
ciphers/playfair_cipher.py
Normal file
|
@ -0,0 +1,102 @@
|
|||
import string
|
||||
import itertools
|
||||
|
||||
def chunker(seq, size):
|
||||
it = iter(seq)
|
||||
while True:
|
||||
chunk = tuple(itertools.islice(it, size))
|
||||
if not chunk:
|
||||
return
|
||||
yield chunk
|
||||
|
||||
|
||||
|
||||
def prepare_input(dirty):
|
||||
"""
|
||||
Prepare the plaintext by uppcasing it
|
||||
and seperating repeated letters with X's
|
||||
"""
|
||||
|
||||
dirty = ''.join([c.upper() for c in dirty if c in string.ascii_letters])
|
||||
clean = ""
|
||||
|
||||
if len(dirty) < 2:
|
||||
return dirty
|
||||
|
||||
for i in range(len(dirty)-1):
|
||||
clean += dirty[i]
|
||||
|
||||
if dirty[i] == dirty[i+1]:
|
||||
clean += 'X'
|
||||
|
||||
clean += dirty[-1]
|
||||
|
||||
if len(clean) & 1:
|
||||
clean += 'X'
|
||||
|
||||
return clean
|
||||
|
||||
def generate_table(key):
|
||||
|
||||
# I and J are used interchangably to allow
|
||||
# us to use a 5x5 table (25 letters)
|
||||
alphabet = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
|
||||
# we're using a list instead of a '2d' array because it makes the math
|
||||
# for setting up the table and doing the actual encoding/decoding simpler
|
||||
table = []
|
||||
|
||||
# copy key chars into the table if they are in `alphabet` ignoring duplicates
|
||||
for char in key.upper():
|
||||
if char not in table and char in alphabet:
|
||||
table.append(char)
|
||||
|
||||
# fill the rest of the table in with the remaining alphabet chars
|
||||
for char in alphabet:
|
||||
if char not in table:
|
||||
table.append(char)
|
||||
|
||||
return table
|
||||
|
||||
def encode(plaintext, key):
|
||||
table = generate_table(key)
|
||||
plaintext = prepare_input(plaintext)
|
||||
ciphertext = ""
|
||||
|
||||
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
|
||||
for char1, char2 in chunker(plaintext, 2):
|
||||
row1, col1 = divmod(table.index(char1), 5)
|
||||
row2, col2 = divmod(table.index(char2), 5)
|
||||
|
||||
if row1 == row2:
|
||||
ciphertext += table[row1*5+(col1+1)%5]
|
||||
ciphertext += table[row2*5+(col2+1)%5]
|
||||
elif col1 == col2:
|
||||
ciphertext += table[((row1+1)%5)*5+col1]
|
||||
ciphertext += table[((row2+1)%5)*5+col2]
|
||||
else: # rectangle
|
||||
ciphertext += table[row1*5+col2]
|
||||
ciphertext += table[row2*5+col1]
|
||||
|
||||
return ciphertext
|
||||
|
||||
|
||||
def decode(ciphertext, key):
|
||||
table = generate_table(key)
|
||||
plaintext = ""
|
||||
|
||||
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
|
||||
for char1, char2 in chunk(ciphertext, 2):
|
||||
row1, col1 = divmod(table.index(char1), 5)
|
||||
row2, col2 = divmod(table.index(char2), 5)
|
||||
|
||||
if row1 == row2:
|
||||
plaintext += table[row1*5+(col1-1)%5]
|
||||
plaintext += table[row2*5+(col2-1)%5]
|
||||
elif col1 == col2:
|
||||
plaintext += table[((row1-1)%5)*5+col1]
|
||||
plaintext += table[((row2-1)%5)*5+col2]
|
||||
else: # rectangle
|
||||
plaintext += table[row1*5+col2]
|
||||
plaintext += table[row2*5+col1]
|
||||
|
||||
return plaintext
|
63
ciphers/rabin_miller.py
Normal file
63
ciphers/rabin_miller.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
# Primality Testing with the Rabin-Miller Algorithm
|
||||
|
||||
import random
|
||||
|
||||
def rabinMiller(num):
|
||||
s = num - 1
|
||||
t = 0
|
||||
|
||||
while s % 2 == 0:
|
||||
s = s // 2
|
||||
t += 1
|
||||
|
||||
for trials in range(5):
|
||||
a = random.randrange(2, num - 1)
|
||||
v = pow(a, s, num)
|
||||
if v != 1:
|
||||
i = 0
|
||||
while v != (num - 1):
|
||||
if i == t - 1:
|
||||
return False
|
||||
else:
|
||||
i = i + 1
|
||||
v = (v ** 2) % num
|
||||
return True
|
||||
|
||||
def isPrime(num):
|
||||
if (num < 2):
|
||||
return False
|
||||
|
||||
lowPrimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
|
||||
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
|
||||
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
|
||||
193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
|
||||
263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
|
||||
337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
|
||||
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
|
||||
479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563,
|
||||
569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
|
||||
641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709,
|
||||
719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
|
||||
809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
|
||||
881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967,
|
||||
971, 977, 983, 991, 997]
|
||||
|
||||
if num in lowPrimes:
|
||||
return True
|
||||
|
||||
for prime in lowPrimes:
|
||||
if (num % prime) == 0:
|
||||
return False
|
||||
|
||||
return rabinMiller(num)
|
||||
|
||||
def generateLargePrime(keysize = 1024):
|
||||
while True:
|
||||
num = random.randrange(2 ** (keysize - 1), 2 ** (keysize))
|
||||
if isPrime(num):
|
||||
return num
|
||||
|
||||
if __name__ == '__main__':
|
||||
num = generateLargePrime()
|
||||
print('Prime number:', num)
|
||||
print('isPrime:', isPrime(num))
|
124
ciphers/rsa_cipher.py
Normal file
124
ciphers/rsa_cipher.py
Normal file
|
@ -0,0 +1,124 @@
|
|||
import sys, rsa_key_generator as rkg, os
|
||||
|
||||
DEFAULT_BLOCK_SIZE = 128
|
||||
BYTE_SIZE = 256
|
||||
|
||||
def main():
|
||||
filename = 'encrypted_file.txt'
|
||||
response = input('Encrypte\Decrypt [e\d]: ')
|
||||
|
||||
if response.lower().startswith('e'):
|
||||
mode = 'encrypt'
|
||||
elif response.lower().startswith('d'):
|
||||
mode = 'decrypt'
|
||||
|
||||
if mode == 'encrypt':
|
||||
if not os.path.exists('rsa_pubkey.txt'):
|
||||
rkg.makeKeyFiles('rsa', 1024)
|
||||
|
||||
message = input('\nEnter message: ')
|
||||
pubKeyFilename = 'rsa_pubkey.txt'
|
||||
print('Encrypting and writing to %s...' % (filename))
|
||||
encryptedText = encryptAndWriteToFile(filename, pubKeyFilename, message)
|
||||
|
||||
print('\nEncrypted text:')
|
||||
print(encryptedText)
|
||||
|
||||
elif mode == 'decrypt':
|
||||
privKeyFilename = 'rsa_privkey.txt'
|
||||
print('Reading from %s and decrypting...' % (filename))
|
||||
decryptedText = readFromFileAndDecrypt(filename, privKeyFilename)
|
||||
print('writing decryption to rsa_decryption.txt...')
|
||||
with open('rsa_decryption.txt', 'w') as dec:
|
||||
dec.write(decryptedText)
|
||||
|
||||
print('\nDecryption:')
|
||||
print(decryptedText)
|
||||
|
||||
|
||||
def getBlocksFromText(message, blockSize=DEFAULT_BLOCK_SIZE):
|
||||
messageBytes = message.encode('ascii')
|
||||
|
||||
blockInts = []
|
||||
for blockStart in range(0, len(messageBytes), blockSize):
|
||||
blockInt = 0
|
||||
for i in range(blockStart, min(blockStart + blockSize, len(messageBytes))):
|
||||
blockInt += messageBytes[i] * (BYTE_SIZE ** (i % blockSize))
|
||||
blockInts.append(blockInt)
|
||||
return blockInts
|
||||
|
||||
|
||||
def getTextFromBlocks(blockInts, messageLength, blockSize=DEFAULT_BLOCK_SIZE):
|
||||
message = []
|
||||
for blockInt in blockInts:
|
||||
blockMessage = []
|
||||
for i in range(blockSize - 1, -1, -1):
|
||||
if len(message) + i < messageLength:
|
||||
asciiNumber = blockInt // (BYTE_SIZE ** i)
|
||||
blockInt = blockInt % (BYTE_SIZE ** i)
|
||||
blockMessage.insert(0, chr(asciiNumber))
|
||||
message.extend(blockMessage)
|
||||
return ''.join(message)
|
||||
|
||||
|
||||
def encryptMessage(message, key, blockSize=DEFAULT_BLOCK_SIZE):
|
||||
encryptedBlocks = []
|
||||
n, e = key
|
||||
|
||||
for block in getBlocksFromText(message, blockSize):
|
||||
encryptedBlocks.append(pow(block, e, n))
|
||||
return encryptedBlocks
|
||||
|
||||
|
||||
def decryptMessage(encryptedBlocks, messageLength, key, blockSize=DEFAULT_BLOCK_SIZE):
|
||||
decryptedBlocks = []
|
||||
n, d = key
|
||||
for block in encryptedBlocks:
|
||||
decryptedBlocks.append(pow(block, d, n))
|
||||
return getTextFromBlocks(decryptedBlocks, messageLength, blockSize)
|
||||
|
||||
|
||||
def readKeyFile(keyFilename):
|
||||
fo = open(keyFilename)
|
||||
content = fo.read()
|
||||
fo.close()
|
||||
keySize, n, EorD = content.split(',')
|
||||
return (int(keySize), int(n), int(EorD))
|
||||
|
||||
|
||||
def encryptAndWriteToFile(messageFilename, keyFilename, message, blockSize=DEFAULT_BLOCK_SIZE):
|
||||
keySize, n, e = readKeyFile(keyFilename)
|
||||
if keySize < blockSize * 8:
|
||||
sys.exit('ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Either decrease the block size or use different keys.' % (blockSize * 8, keySize))
|
||||
|
||||
encryptedBlocks = encryptMessage(message, (n, e), blockSize)
|
||||
|
||||
for i in range(len(encryptedBlocks)):
|
||||
encryptedBlocks[i] = str(encryptedBlocks[i])
|
||||
encryptedContent = ','.join(encryptedBlocks)
|
||||
encryptedContent = '%s_%s_%s' % (len(message), blockSize, encryptedContent)
|
||||
fo = open(messageFilename, 'w')
|
||||
fo.write(encryptedContent)
|
||||
fo.close()
|
||||
return encryptedContent
|
||||
|
||||
|
||||
def readFromFileAndDecrypt(messageFilename, keyFilename):
|
||||
keySize, n, d = readKeyFile(keyFilename)
|
||||
fo = open(messageFilename)
|
||||
content = fo.read()
|
||||
messageLength, blockSize, encryptedMessage = content.split('_')
|
||||
messageLength = int(messageLength)
|
||||
blockSize = int(blockSize)
|
||||
|
||||
if keySize < blockSize * 8:
|
||||
sys.exit('ERROR: Block size is %s bits and key size is %s bits. The RSA cipher requires the block size to be equal to or greater than the key size. Did you specify the correct key file and encrypted file?' % (blockSize * 8, keySize))
|
||||
|
||||
encryptedBlocks = []
|
||||
for block in encryptedMessage.split(','):
|
||||
encryptedBlocks.append(int(block))
|
||||
|
||||
return decryptMessage(encryptedBlocks, messageLength, (n, d), blockSize)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
45
ciphers/rsa_key_generator.py
Normal file
45
ciphers/rsa_key_generator.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
import random, sys, os
|
||||
import rabin_miller as rabinMiller, cryptomath_module as cryptoMath
|
||||
|
||||
def main():
|
||||
print('Making key files...')
|
||||
makeKeyFiles('rsa', 1024)
|
||||
print('Key files generation successful.')
|
||||
|
||||
def generateKey(keySize):
|
||||
print('Generating prime p...')
|
||||
p = rabinMiller.generateLargePrime(keySize)
|
||||
print('Generating prime q...')
|
||||
q = rabinMiller.generateLargePrime(keySize)
|
||||
n = p * q
|
||||
|
||||
print('Generating e that is relatively prime to (p - 1) * (q - 1)...')
|
||||
while True:
|
||||
e = random.randrange(2 ** (keySize - 1), 2 ** (keySize))
|
||||
if cryptoMath.gcd(e, (p - 1) * (q - 1)) == 1:
|
||||
break
|
||||
|
||||
print('Calculating d that is mod inverse of e...')
|
||||
d = cryptoMath.findModInverse(e, (p - 1) * (q - 1))
|
||||
|
||||
publicKey = (n, e)
|
||||
privateKey = (n, d)
|
||||
return (publicKey, privateKey)
|
||||
|
||||
def makeKeyFiles(name, keySize):
|
||||
if os.path.exists('%s_pubkey.txt' % (name)) or os.path.exists('%s_privkey.txt' % (name)):
|
||||
print('\nWARNING:')
|
||||
print('"%s_pubkey.txt" or "%s_privkey.txt" already exists. \nUse a different name or delete these files and re-run this program.' % (name, name))
|
||||
sys.exit()
|
||||
|
||||
publicKey, privateKey = generateKey(keySize)
|
||||
print('\nWriting public key to file %s_pubkey.txt...' % name)
|
||||
with open('%s_pubkey.txt' % name, 'w') as fo:
|
||||
fo.write('%s,%s,%s' % (keySize, publicKey[0], publicKey[1]))
|
||||
|
||||
print('Writing private key to file %s_privkey.txt...' % name)
|
||||
with open('%s_privkey.txt' % name, 'w') as fo:
|
||||
fo.write('%s,%s,%s' % (keySize, privateKey[0], privateKey[1]))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
70
ciphers/simple_substitution_cipher.py
Normal file
70
ciphers/simple_substitution_cipher.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
import sys, random
|
||||
|
||||
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
||||
|
||||
def main():
|
||||
message = input('Enter message: ')
|
||||
key = 'LFWOAYUISVKMNXPBDCRJTQEGHZ'
|
||||
resp = input('Encrypt/Decrypt [e/d]: ')
|
||||
|
||||
checkValidKey(key)
|
||||
|
||||
if resp.lower().startswith('e'):
|
||||
mode = 'encrypt'
|
||||
translated = encryptMessage(key, message)
|
||||
elif resp.lower().startswith('d'):
|
||||
mode = 'decrypt'
|
||||
translated = decryptMessage(key, message)
|
||||
|
||||
print('\n%sion: \n%s' % (mode.title(), translated))
|
||||
|
||||
def checkValidKey(key):
|
||||
keyList = list(key)
|
||||
lettersList = list(LETTERS)
|
||||
keyList.sort()
|
||||
lettersList.sort()
|
||||
|
||||
if keyList != lettersList:
|
||||
sys.exit('Error in the key or symbol set.')
|
||||
|
||||
def encryptMessage(key, message):
|
||||
"""
|
||||
>>> encryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Harshil Darji')
|
||||
'Ilcrism Olcvs'
|
||||
"""
|
||||
return translateMessage(key, message, 'encrypt')
|
||||
|
||||
def decryptMessage(key, message):
|
||||
"""
|
||||
>>> decryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Ilcrism Olcvs')
|
||||
'Harshil Darji'
|
||||
"""
|
||||
return translateMessage(key, message, 'decrypt')
|
||||
|
||||
def translateMessage(key, message, mode):
|
||||
translated = ''
|
||||
charsA = LETTERS
|
||||
charsB = key
|
||||
|
||||
if mode == 'decrypt':
|
||||
charsA, charsB = charsB, charsA
|
||||
|
||||
for symbol in message:
|
||||
if symbol.upper() in charsA:
|
||||
symIndex = charsA.find(symbol.upper())
|
||||
if symbol.isupper():
|
||||
translated += charsB[symIndex].upper()
|
||||
else:
|
||||
translated += charsB[symIndex].lower()
|
||||
else:
|
||||
translated += symbol
|
||||
|
||||
return translated
|
||||
|
||||
def getRandomKey():
|
||||
key = list(LETTERS)
|
||||
random.shuffle(key)
|
||||
return ''.join(key)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
53
ciphers/transposition_cipher.py
Normal file
53
ciphers/transposition_cipher.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
import math
|
||||
|
||||
def main():
|
||||
message = input('Enter message: ')
|
||||
key = int(input('Enter key [2-%s]: ' % (len(message) - 1)))
|
||||
mode = input('Encryption/Decryption [e/d]: ')
|
||||
|
||||
if mode.lower().startswith('e'):
|
||||
text = encryptMessage(key, message)
|
||||
elif mode.lower().startswith('d'):
|
||||
text = decryptMessage(key, message)
|
||||
|
||||
# Append pipe symbol (vertical bar) to identify spaces at the end.
|
||||
print('Output:\n%s' %(text + '|'))
|
||||
|
||||
def encryptMessage(key, message):
|
||||
"""
|
||||
>>> encryptMessage(6, 'Harshil Darji')
|
||||
'Hlia rDsahrij'
|
||||
"""
|
||||
cipherText = [''] * key
|
||||
for col in range(key):
|
||||
pointer = col
|
||||
while pointer < len(message):
|
||||
cipherText[col] += message[pointer]
|
||||
pointer += key
|
||||
return ''.join(cipherText)
|
||||
|
||||
def decryptMessage(key, message):
|
||||
"""
|
||||
>>> decryptMessage(6, 'Hlia rDsahrij')
|
||||
'Harshil Darji'
|
||||
"""
|
||||
numCols = math.ceil(len(message) / key)
|
||||
numRows = key
|
||||
numShadedBoxes = (numCols * numRows) - len(message)
|
||||
plainText = [""] * numCols
|
||||
col = 0; row = 0;
|
||||
|
||||
for symbol in message:
|
||||
plainText[col] += symbol
|
||||
col += 1
|
||||
|
||||
if (col == numCols) or (col == numCols - 1) and (row >= numRows - numShadedBoxes):
|
||||
col = 0
|
||||
row += 1
|
||||
|
||||
return "".join(plainText)
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
main()
|
35
ciphers/transposition_cipher_encrypt-decrypt_file.py
Normal file
35
ciphers/transposition_cipher_encrypt-decrypt_file.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
import time, os, sys
|
||||
import transposition_cipher as transCipher
|
||||
|
||||
def main():
|
||||
inputFile = 'Prehistoric Men.txt'
|
||||
outputFile = 'Output.txt'
|
||||
key = int(input('Enter key: '))
|
||||
mode = input('Encrypt/Decrypt [e/d]: ')
|
||||
|
||||
if not os.path.exists(inputFile):
|
||||
print('File %s does not exist. Quitting...' % inputFile)
|
||||
sys.exit()
|
||||
if os.path.exists(outputFile):
|
||||
print('Overwrite %s? [y/n]' % outputFile)
|
||||
response = input('> ')
|
||||
if not response.lower().startswith('y'):
|
||||
sys.exit()
|
||||
|
||||
startTime = time.time()
|
||||
if mode.lower().startswith('e'):
|
||||
content = open(inputFile).read()
|
||||
translated = transCipher.encryptMessage(key, content)
|
||||
elif mode.lower().startswith('d'):
|
||||
content = open(outputFile).read()
|
||||
translated =transCipher .decryptMessage(key, content)
|
||||
|
||||
outputObj = open(outputFile, 'w')
|
||||
outputObj.write(translated)
|
||||
outputObj.close()
|
||||
|
||||
totalTime = round(time.time() - startTime, 2)
|
||||
print('Done (', totalTime, 'seconds )')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
60
ciphers/vigenere_cipher.py
Normal file
60
ciphers/vigenere_cipher.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
||||
|
||||
def main():
|
||||
message = input('Enter message: ')
|
||||
key = input('Enter key [alphanumeric]: ')
|
||||
mode = input('Encrypt/Decrypt [e/d]: ')
|
||||
|
||||
if mode.lower().startswith('e'):
|
||||
mode = 'encrypt'
|
||||
translated = encryptMessage(key, message)
|
||||
elif mode.lower().startswith('d'):
|
||||
mode = 'decrypt'
|
||||
translated = decryptMessage(key, message)
|
||||
|
||||
print('\n%sed message:' % mode.title())
|
||||
print(translated)
|
||||
|
||||
def encryptMessage(key, message):
|
||||
'''
|
||||
>>> encryptMessage('HDarji', 'This is Harshil Darji from Dharmaj.')
|
||||
'Akij ra Odrjqqs Gaisq muod Mphumrs.'
|
||||
'''
|
||||
return translateMessage(key, message, 'encrypt')
|
||||
|
||||
def decryptMessage(key, message):
|
||||
'''
|
||||
>>> decryptMessage('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.')
|
||||
'This is Harshil Darji from Dharmaj.'
|
||||
'''
|
||||
return translateMessage(key, message, 'decrypt')
|
||||
|
||||
def translateMessage(key, message, mode):
|
||||
translated = []
|
||||
keyIndex = 0
|
||||
key = key.upper()
|
||||
|
||||
for symbol in message:
|
||||
num = LETTERS.find(symbol.upper())
|
||||
if num != -1:
|
||||
if mode == 'encrypt':
|
||||
num += LETTERS.find(key[keyIndex])
|
||||
elif mode == 'decrypt':
|
||||
num -= LETTERS.find(key[keyIndex])
|
||||
|
||||
num %= len(LETTERS)
|
||||
|
||||
if symbol.isupper():
|
||||
translated.append(LETTERS[num])
|
||||
elif symbol.islower():
|
||||
translated.append(LETTERS[num].lower())
|
||||
|
||||
keyIndex += 1
|
||||
if keyIndex == len(key):
|
||||
keyIndex = 0
|
||||
else:
|
||||
translated.append(symbol)
|
||||
return ''.join(translated)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
180
data_structures/AVL/AVL.py
Normal file
180
data_structures/AVL/AVL.py
Normal file
|
@ -0,0 +1,180 @@
|
|||
'''
|
||||
A AVL tree
|
||||
'''
|
||||
|
||||
|
||||
class Node:
|
||||
|
||||
def __init__(self, label):
|
||||
self.label = label
|
||||
self._parent = None
|
||||
self._left = None
|
||||
self._right = None
|
||||
self.height = 0
|
||||
|
||||
@property
|
||||
def right(self):
|
||||
return self._right
|
||||
|
||||
@right.setter
|
||||
def right(self, node):
|
||||
if node is not None:
|
||||
node._parent = self
|
||||
self._right = node
|
||||
|
||||
@property
|
||||
def left(self):
|
||||
return self._left
|
||||
|
||||
@left.setter
|
||||
def left(self, node):
|
||||
if node is not None:
|
||||
node._parent = self
|
||||
self._left = node
|
||||
|
||||
@property
|
||||
def parent(self):
|
||||
return self._parent
|
||||
|
||||
@parent.setter
|
||||
def parent(self, node):
|
||||
if node is not None:
|
||||
self._parent = node
|
||||
self.height = self.parent.height + 1
|
||||
else:
|
||||
self.height = 0
|
||||
|
||||
|
||||
class AVL:
|
||||
|
||||
def __init__(self):
|
||||
self.root = None
|
||||
self.size = 0
|
||||
|
||||
def insert(self, value):
|
||||
node = Node(value)
|
||||
|
||||
if self.root is None:
|
||||
self.root = node
|
||||
self.root.height = 0
|
||||
self.size = 1
|
||||
else:
|
||||
# Same as Binary Tree
|
||||
dad_node = None
|
||||
curr_node = self.root
|
||||
|
||||
while True:
|
||||
if curr_node is not None:
|
||||
|
||||
dad_node = curr_node
|
||||
|
||||
if node.label < curr_node.label:
|
||||
curr_node = curr_node.left
|
||||
else:
|
||||
curr_node = curr_node.right
|
||||
else:
|
||||
node.height = dad_node.height
|
||||
dad_node.height += 1
|
||||
if node.label < dad_node.label:
|
||||
dad_node.left = node
|
||||
else:
|
||||
dad_node.right = node
|
||||
self.rebalance(node)
|
||||
self.size += 1
|
||||
break
|
||||
|
||||
def rebalance(self, node):
|
||||
n = node
|
||||
|
||||
while n is not None:
|
||||
height_right = n.height
|
||||
height_left = n.height
|
||||
|
||||
if n.right is not None:
|
||||
height_right = n.right.height
|
||||
|
||||
if n.left is not None:
|
||||
height_left = n.left.height
|
||||
|
||||
if abs(height_left - height_right) > 1:
|
||||
if height_left > height_right:
|
||||
left_child = n.left
|
||||
if left_child is not None:
|
||||
h_right = (right_child.right.height
|
||||
if (right_child.right is not None) else 0)
|
||||
h_left = (right_child.left.height
|
||||
if (right_child.left is not None) else 0)
|
||||
if (h_left > h_right):
|
||||
self.rotate_left(n)
|
||||
break
|
||||
else:
|
||||
self.double_rotate_right(n)
|
||||
break
|
||||
else:
|
||||
right_child = n.right
|
||||
if right_child is not None:
|
||||
h_right = (right_child.right.height
|
||||
if (right_child.right is not None) else 0)
|
||||
h_left = (right_child.left.height
|
||||
if (right_child.left is not None) else 0)
|
||||
if (h_left > h_right):
|
||||
self.double_rotate_left(n)
|
||||
break
|
||||
else:
|
||||
self.rotate_right(n)
|
||||
break
|
||||
n = n.parent
|
||||
|
||||
def rotate_left(self, node):
|
||||
aux = node.parent.label
|
||||
node.parent.label = node.label
|
||||
node.parent.right = Node(aux)
|
||||
node.parent.right.height = node.parent.height + 1
|
||||
node.parent.left = node.right
|
||||
|
||||
|
||||
def rotate_right(self, node):
|
||||
aux = node.parent.label
|
||||
node.parent.label = node.label
|
||||
node.parent.left = Node(aux)
|
||||
node.parent.left.height = node.parent.height + 1
|
||||
node.parent.right = node.right
|
||||
|
||||
def double_rotate_left(self, node):
|
||||
self.rotate_right(node.getRight().getRight())
|
||||
self.rotate_left(node)
|
||||
|
||||
def double_rotate_right(self, node):
|
||||
self.rotate_left(node.getLeft().getLeft())
|
||||
self.rotate_right(node)
|
||||
|
||||
def empty(self):
|
||||
if self.root is None:
|
||||
return True
|
||||
return False
|
||||
|
||||
def preShow(self, curr_node):
|
||||
if curr_node is not None:
|
||||
self.preShow(curr_node.left)
|
||||
print(curr_node.label, end=" ")
|
||||
self.preShow(curr_node.right)
|
||||
|
||||
def preorder(self, curr_node):
|
||||
if curr_node is not None:
|
||||
self.preShow(curr_node.left)
|
||||
self.preShow(curr_node.right)
|
||||
print(curr_node.label, end=" ")
|
||||
|
||||
def getRoot(self):
|
||||
return self.root
|
||||
|
||||
t = AVL()
|
||||
t.insert(1)
|
||||
t.insert(2)
|
||||
t.insert(3)
|
||||
# t.preShow(t.root)
|
||||
# print("\n")
|
||||
# t.insert(4)
|
||||
# t.insert(5)
|
||||
# t.preShow(t.root)
|
||||
# t.preorden(t.root)
|
1
data_structures/Arrays
Normal file
1
data_structures/Arrays
Normal file
|
@ -0,0 +1 @@
|
|||
Arrays implimentation using python programming.
|
28
data_structures/Binary Tree/FenwickTree.py
Normal file
28
data_structures/Binary Tree/FenwickTree.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
class FenwickTree:
|
||||
|
||||
def __init__(self, SIZE): # create fenwick tree with size SIZE
|
||||
self.Size = SIZE
|
||||
self.ft = [0 for i in range (0,SIZE)]
|
||||
|
||||
def update(self, i, val): # update data (adding) in index i in O(lg N)
|
||||
while (i < self.Size):
|
||||
self.ft[i] += val
|
||||
i += i & (-i)
|
||||
|
||||
def query(self, i): # query cumulative data from index 0 to i in O(lg N)
|
||||
ret = 0
|
||||
while (i > 0):
|
||||
ret += self.ft[i]
|
||||
i -= i & (-i)
|
||||
return ret
|
||||
|
||||
if __name__ == '__main__':
|
||||
f = FenwickTree(100)
|
||||
f.update(1,20)
|
||||
f.update(4,4)
|
||||
print (f.query(1))
|
||||
print (f.query(3))
|
||||
print (f.query(4))
|
||||
f.update(2,-5)
|
||||
print (f.query(1))
|
||||
print (f.query(3))
|
90
data_structures/Binary Tree/LazySegmentTree.py
Normal file
90
data_structures/Binary Tree/LazySegmentTree.py
Normal file
|
@ -0,0 +1,90 @@
|
|||
import math
|
||||
|
||||
class SegmentTree:
|
||||
|
||||
def __init__(self, N):
|
||||
self.N = N
|
||||
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
|
||||
self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update
|
||||
self.flag = [0 for i in range(0,4*N)] # flag for lazy update
|
||||
|
||||
def left(self, idx):
|
||||
return idx*2
|
||||
|
||||
def right(self, idx):
|
||||
return idx*2 + 1
|
||||
|
||||
def build(self, idx, l, r, A):
|
||||
if l==r:
|
||||
self.st[idx] = A[l-1]
|
||||
else :
|
||||
mid = (l+r)//2
|
||||
self.build(self.left(idx),l,mid, A)
|
||||
self.build(self.right(idx),mid+1,r, A)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
|
||||
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update)
|
||||
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
|
||||
if self.flag[idx] == True:
|
||||
self.st[idx] = self.lazy[idx]
|
||||
self.flag[idx] = False
|
||||
if l!=r:
|
||||
self.lazy[self.left(idx)] = self.lazy[idx]
|
||||
self.lazy[self.right(idx)] = self.lazy[idx]
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
|
||||
if r < a or l > b:
|
||||
return True
|
||||
if l >= a and r <= b :
|
||||
self.st[idx] = val
|
||||
if l!=r:
|
||||
self.lazy[self.left(idx)] = val
|
||||
self.lazy[self.right(idx)] = val
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
return True
|
||||
mid = (l+r)//2
|
||||
self.update(self.left(idx),l,mid,a,b,val)
|
||||
self.update(self.right(idx),mid+1,r,a,b,val)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
return True
|
||||
|
||||
# query with O(lg N)
|
||||
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
|
||||
if self.flag[idx] == True:
|
||||
self.st[idx] = self.lazy[idx]
|
||||
self.flag[idx] = False
|
||||
if l != r:
|
||||
self.lazy[self.left(idx)] = self.lazy[idx]
|
||||
self.lazy[self.right(idx)] = self.lazy[idx]
|
||||
self.flag[self.left(idx)] = True
|
||||
self.flag[self.right(idx)] = True
|
||||
if r < a or l > b:
|
||||
return -math.inf
|
||||
if l >= a and r <= b:
|
||||
return self.st[idx]
|
||||
mid = (l+r)//2
|
||||
q1 = self.query(self.left(idx),l,mid,a,b)
|
||||
q2 = self.query(self.right(idx),mid+1,r,a,b)
|
||||
return max(q1,q2)
|
||||
|
||||
def showData(self):
|
||||
showList = []
|
||||
for i in range(1,N+1):
|
||||
showList += [self.query(1, 1, self.N, i, i)]
|
||||
print (showList)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
|
||||
N = 15
|
||||
segt = SegmentTree(N)
|
||||
segt.build(1,1,N,A)
|
||||
print (segt.query(1,1,N,4,6))
|
||||
print (segt.query(1,1,N,7,11))
|
||||
print (segt.query(1,1,N,7,12))
|
||||
segt.update(1,1,N,1,3,111)
|
||||
print (segt.query(1,1,N,1,15))
|
||||
segt.update(1,1,N,7,8,235)
|
||||
segt.showData()
|
64
data_structures/Binary Tree/SegmentTree.py
Normal file
64
data_structures/Binary Tree/SegmentTree.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
import math
|
||||
|
||||
class SegmentTree:
|
||||
|
||||
def __init__(self, N):
|
||||
self.N = N
|
||||
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
|
||||
|
||||
def left(self, idx):
|
||||
return idx*2
|
||||
|
||||
def right(self, idx):
|
||||
return idx*2 + 1
|
||||
|
||||
def build(self, idx, l, r, A):
|
||||
if l==r:
|
||||
self.st[idx] = A[l-1]
|
||||
else :
|
||||
mid = (l+r)//2
|
||||
self.build(self.left(idx),l,mid, A)
|
||||
self.build(self.right(idx),mid+1,r, A)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
|
||||
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
|
||||
if r < a or l > b:
|
||||
return True
|
||||
if l == r :
|
||||
self.st[idx] = val
|
||||
return True
|
||||
mid = (l+r)//2
|
||||
self.update(self.left(idx),l,mid,a,b,val)
|
||||
self.update(self.right(idx),mid+1,r,a,b,val)
|
||||
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
|
||||
return True
|
||||
|
||||
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
|
||||
if r < a or l > b:
|
||||
return -math.inf
|
||||
if l >= a and r <= b:
|
||||
return self.st[idx]
|
||||
mid = (l+r)//2
|
||||
q1 = self.query(self.left(idx),l,mid,a,b)
|
||||
q2 = self.query(self.right(idx),mid+1,r,a,b)
|
||||
return max(q1,q2)
|
||||
|
||||
def showData(self):
|
||||
showList = []
|
||||
for i in range(1,N+1):
|
||||
showList += [self.query(1, 1, self.N, i, i)]
|
||||
print (showList)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
|
||||
N = 15
|
||||
segt = SegmentTree(N)
|
||||
segt.build(1,1,N,A)
|
||||
print (segt.query(1,1,N,4,6))
|
||||
print (segt.query(1,1,N,7,11))
|
||||
print (segt.query(1,1,N,7,12))
|
||||
segt.update(1,1,N,1,3,111)
|
||||
print (segt.query(1,1,N,1,15))
|
||||
segt.update(1,1,N,7,8,235)
|
||||
segt.showData()
|
103
data_structures/Binary Tree/binary_seach_tree.py
Normal file
103
data_structures/Binary Tree/binary_seach_tree.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
'''
|
||||
A binary search Tree
|
||||
'''
|
||||
|
||||
|
||||
class Node:
|
||||
|
||||
def __init__(self, label):
|
||||
self.label = label
|
||||
self.left = None
|
||||
self.right = None
|
||||
|
||||
def getLabel(self):
|
||||
return self.label
|
||||
|
||||
def setLabel(self, label):
|
||||
self.label = label
|
||||
|
||||
def getLeft(self):
|
||||
return self.left
|
||||
|
||||
def setLeft(self, left):
|
||||
self.left = left
|
||||
|
||||
def getRight(self):
|
||||
return self.right
|
||||
|
||||
def setRight(self, right):
|
||||
self.right = right
|
||||
|
||||
|
||||
class BinarySearchTree:
|
||||
|
||||
def __init__(self):
|
||||
self.root = None
|
||||
|
||||
def insert(self, label):
|
||||
|
||||
# Create a new Node
|
||||
|
||||
node = Node(label)
|
||||
|
||||
if self.empty():
|
||||
self.root = node
|
||||
else:
|
||||
dad_node = None
|
||||
curr_node = self.root
|
||||
|
||||
while True:
|
||||
if curr_node is not None:
|
||||
|
||||
dad_node = curr_node
|
||||
|
||||
if node.getLabel() < curr_node.getLabel():
|
||||
curr_node = curr_node.getLeft()
|
||||
else:
|
||||
curr_node = curr_node.getRight()
|
||||
else:
|
||||
if node.getLabel() < dad_node.getLabel():
|
||||
dad_node.setLeft(node)
|
||||
else:
|
||||
dad_node.setRight(node)
|
||||
break
|
||||
|
||||
def empty(self):
|
||||
if self.root is None:
|
||||
return True
|
||||
return False
|
||||
|
||||
def preShow(self, curr_node):
|
||||
if curr_node is not None:
|
||||
print(curr_node.getLabel(), end=" ")
|
||||
|
||||
self.preShow(curr_node.getLeft())
|
||||
self.preShow(curr_node.getRight())
|
||||
|
||||
def getRoot(self):
|
||||
return self.root
|
||||
|
||||
|
||||
'''
|
||||
Example
|
||||
8
|
||||
/ \
|
||||
3 10
|
||||
/ \ \
|
||||
1 6 14
|
||||
/ \ /
|
||||
4 7 13
|
||||
'''
|
||||
|
||||
t = BinarySearchTree()
|
||||
t.insert(8)
|
||||
t.insert(3)
|
||||
t.insert(1)
|
||||
t.insert(6)
|
||||
t.insert(4)
|
||||
t.insert(7)
|
||||
t.insert(10)
|
||||
t.insert(14)
|
||||
t.insert(13)
|
||||
|
||||
t.preShow(t.getRoot())
|
61
data_structures/Graph/BreadthFirstSearch.py
Normal file
61
data_structures/Graph/BreadthFirstSearch.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
# Author: OMKAR PATHAK
|
||||
|
||||
class Graph():
|
||||
def __init__(self):
|
||||
self.vertex = {}
|
||||
|
||||
# for printing the Graph vertexes
|
||||
def printGraph(self):
|
||||
for i in self.vertex.keys():
|
||||
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
|
||||
|
||||
# for adding the edge beween two vertexes
|
||||
def addEdge(self, fromVertex, toVertex):
|
||||
# check if vertex is already present,
|
||||
if fromVertex in self.vertex.keys():
|
||||
self.vertex[fromVertex].append(toVertex)
|
||||
else:
|
||||
# else make a new vertex
|
||||
self.vertex[fromVertex] = [toVertex]
|
||||
|
||||
def BFS(self, startVertex):
|
||||
# Take a list for stoting already visited vertexes
|
||||
visited = [False] * len(self.vertex)
|
||||
|
||||
# create a list to store all the vertexes for BFS
|
||||
queue = []
|
||||
|
||||
# mark the source node as visited and enqueue it
|
||||
visited[startVertex] = True
|
||||
queue.append(startVertex)
|
||||
|
||||
while queue:
|
||||
startVertex = queue.pop(0)
|
||||
print(startVertex, end = ' ')
|
||||
|
||||
# mark all adjacent nodes as visited and print them
|
||||
for i in self.vertex[startVertex]:
|
||||
if visited[i] == False:
|
||||
queue.append(i)
|
||||
visited[i] = True
|
||||
|
||||
if __name__ == '__main__':
|
||||
g = Graph()
|
||||
g.addEdge(0, 1)
|
||||
g.addEdge(0, 2)
|
||||
g.addEdge(1, 2)
|
||||
g.addEdge(2, 0)
|
||||
g.addEdge(2, 3)
|
||||
g.addEdge(3, 3)
|
||||
|
||||
g.printGraph()
|
||||
print('BFS:')
|
||||
g.BFS(2)
|
||||
|
||||
# OUTPUT:
|
||||
# 0 -> 1 -> 2
|
||||
# 1 -> 2
|
||||
# 2 -> 0 -> 3
|
||||
# 3 -> 3
|
||||
# BFS:
|
||||
# 2 0 3 1
|
61
data_structures/Graph/DepthFirstSearch.py
Normal file
61
data_structures/Graph/DepthFirstSearch.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
# Author: OMKAR PATHAK
|
||||
|
||||
class Graph():
|
||||
def __init__(self):
|
||||
self.vertex = {}
|
||||
|
||||
# for printing the Graph vertexes
|
||||
def printGraph(self):
|
||||
print(self.vertex)
|
||||
for i in self.vertex.keys():
|
||||
print(i,' -> ', ' -> '.join([str(j) for j in self.vertex[i]]))
|
||||
|
||||
# for adding the edge beween two vertexes
|
||||
def addEdge(self, fromVertex, toVertex):
|
||||
# check if vertex is already present,
|
||||
if fromVertex in self.vertex.keys():
|
||||
self.vertex[fromVertex].append(toVertex)
|
||||
else:
|
||||
# else make a new vertex
|
||||
self.vertex[fromVertex] = [toVertex]
|
||||
|
||||
def DFS(self):
|
||||
# visited array for storing already visited nodes
|
||||
visited = [False] * len(self.vertex)
|
||||
|
||||
# call the recursive helper function
|
||||
for i in range(len(self.vertex)):
|
||||
if visited[i] == False:
|
||||
self.DFSRec(i, visited)
|
||||
|
||||
def DFSRec(self, startVertex, visited):
|
||||
# mark start vertex as visited
|
||||
visited[startVertex] = True
|
||||
|
||||
print(startVertex, end = ' ')
|
||||
|
||||
# Recur for all the vertexes that are adjacent to this node
|
||||
for i in self.vertex.keys():
|
||||
if visited[i] == False:
|
||||
self.DFSRec(i, visited)
|
||||
|
||||
if __name__ == '__main__':
|
||||
g = Graph()
|
||||
g.addEdge(0, 1)
|
||||
g.addEdge(0, 2)
|
||||
g.addEdge(1, 2)
|
||||
g.addEdge(2, 0)
|
||||
g.addEdge(2, 3)
|
||||
g.addEdge(3, 3)
|
||||
|
||||
g.printGraph()
|
||||
print('DFS:')
|
||||
g.DFS()
|
||||
|
||||
# OUTPUT:
|
||||
# 0 -> 1 -> 2
|
||||
# 1 -> 2
|
||||
# 2 -> 0 -> 3
|
||||
# 3 -> 3
|
||||
# DFS:
|
||||
# 0 1 2 3
|
40
data_structures/Graph/Graph.py
Normal file
40
data_structures/Graph/Graph.py
Normal file
|
@ -0,0 +1,40 @@
|
|||
# Author: OMKAR PATHAK
|
||||
|
||||
# We can use Python's dictionary for constructing the graph
|
||||
|
||||
class AdjacencyList(object):
|
||||
def __init__(self):
|
||||
self.List = {}
|
||||
|
||||
def addEdge(self, fromVertex, toVertex):
|
||||
# check if vertex is already present
|
||||
if fromVertex in self.List.keys():
|
||||
self.List[fromVertex].append(toVertex)
|
||||
else:
|
||||
self.List[fromVertex] = [toVertex]
|
||||
|
||||
def printList(self):
|
||||
for i in self.List:
|
||||
print(i,'->',' -> '.join([str(j) for j in self.List[i]]))
|
||||
|
||||
if __name__ == '__main__':
|
||||
al = AdjacencyList()
|
||||
al.addEdge(0, 1)
|
||||
al.addEdge(0, 4)
|
||||
al.addEdge(4, 1)
|
||||
al.addEdge(4, 3)
|
||||
al.addEdge(1, 0)
|
||||
al.addEdge(1, 4)
|
||||
al.addEdge(1, 3)
|
||||
al.addEdge(1, 2)
|
||||
al.addEdge(2, 3)
|
||||
al.addEdge(3, 4)
|
||||
|
||||
al.printList()
|
||||
|
||||
# OUTPUT:
|
||||
# 0 -> 1 -> 4
|
||||
# 1 -> 0 -> 4 -> 3 -> 2
|
||||
# 2 -> 3
|
||||
# 3 -> 4
|
||||
# 4 -> 1 -> 3
|
28
data_structures/Graph/Graph_list.py
Normal file
28
data_structures/Graph/Graph_list.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
class Graph:
|
||||
def __init__(self, vertex):
|
||||
self.vertex = vertex
|
||||
self.graph = [[0] for i in range(vertex)]
|
||||
|
||||
def add_edge(self, u, v):
|
||||
self.graph[u - 1].append(v - 1)
|
||||
|
||||
def show(self):
|
||||
for i in range(self.vertex):
|
||||
print('%d: '% (i + 1), end=' ')
|
||||
for j in self.graph[i]:
|
||||
print('%d-> '% (j + 1), end=' ')
|
||||
print(' ')
|
||||
|
||||
|
||||
|
||||
g = Graph(100)
|
||||
|
||||
g.add_edge(1,3)
|
||||
g.add_edge(2,3)
|
||||
g.add_edge(3,4)
|
||||
g.add_edge(3,5)
|
||||
g.add_edge(4,5)
|
||||
|
||||
|
||||
g.show()
|
||||
|
29
data_structures/Graph/Graph_matrix.py
Normal file
29
data_structures/Graph/Graph_matrix.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
class Graph:
|
||||
|
||||
def __init__(self, vertex):
|
||||
self.vertex = vertex
|
||||
self.graph = [[0] * vertex for i in range(vertex) ]
|
||||
|
||||
def add_edge(self, u, v):
|
||||
self.graph[u - 1][v - 1] = 1
|
||||
self.graph[v - 1][u - 1] = 1
|
||||
|
||||
def show(self):
|
||||
|
||||
for i in self.graph:
|
||||
for j in i:
|
||||
print(j, end=' ')
|
||||
print(' ')
|
||||
|
||||
|
||||
|
||||
|
||||
g = Graph(100)
|
||||
|
||||
g.add_edge(1,4)
|
||||
g.add_edge(4,2)
|
||||
g.add_edge(4,5)
|
||||
g.add_edge(2,5)
|
||||
g.add_edge(5,3)
|
||||
g.show()
|
||||
|
211
data_structures/Graph/dijkstra_algorithm.py
Normal file
211
data_structures/Graph/dijkstra_algorithm.py
Normal file
|
@ -0,0 +1,211 @@
|
|||
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
|
||||
# Author: Shubham Malik
|
||||
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
||||
|
||||
import math
|
||||
import sys
|
||||
# For storing the vertex set to retreive node with the lowest distance
|
||||
|
||||
|
||||
class PriorityQueue:
|
||||
# Based on Min Heap
|
||||
def __init__(self):
|
||||
self.cur_size = 0
|
||||
self.array = []
|
||||
self.pos = {} # To store the pos of node in array
|
||||
|
||||
def isEmpty(self):
|
||||
return self.cur_size == 0
|
||||
|
||||
def min_heapify(self, idx):
|
||||
lc = self.left(idx)
|
||||
rc = self.right(idx)
|
||||
if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]:
|
||||
smallest = lc
|
||||
else:
|
||||
smallest = idx
|
||||
if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]:
|
||||
smallest = rc
|
||||
if smallest != idx:
|
||||
self.swap(idx, smallest)
|
||||
self.min_heapify(smallest)
|
||||
|
||||
def insert(self, tup):
|
||||
# Inserts a node into the Priority Queue
|
||||
self.pos[tup[1]] = self.cur_size
|
||||
self.cur_size += 1
|
||||
self.array.append((sys.maxsize, tup[1]))
|
||||
self.decrease_key((sys.maxsize, tup[1]), tup[0])
|
||||
|
||||
def extract_min(self):
|
||||
# Removes and returns the min element at top of priority queue
|
||||
min_node = self.array[0][1]
|
||||
self.array[0] = self.array[self.cur_size - 1]
|
||||
self.cur_size -= 1
|
||||
self.min_heapify(1)
|
||||
del self.pos[min_node]
|
||||
return min_node
|
||||
|
||||
def left(self, i):
|
||||
# returns the index of left child
|
||||
return 2 * i + 1
|
||||
|
||||
def right(self, i):
|
||||
# returns the index of right child
|
||||
return 2 * i + 2
|
||||
|
||||
def par(self, i):
|
||||
# returns the index of parent
|
||||
return math.floor(i / 2)
|
||||
|
||||
def swap(self, i, j):
|
||||
# swaps array elements at indices i and j
|
||||
# update the pos{}
|
||||
self.pos[self.array[i][1]] = j
|
||||
self.pos[self.array[j][1]] = i
|
||||
temp = self.array[i]
|
||||
self.array[i] = self.array[j]
|
||||
self.array[j] = temp
|
||||
|
||||
def decrease_key(self, tup, new_d):
|
||||
idx = self.pos[tup[1]]
|
||||
# assuming the new_d is atmost old_d
|
||||
self.array[idx] = (new_d, tup[1])
|
||||
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
|
||||
self.swap(idx, self.par(idx))
|
||||
idx = self.par(idx)
|
||||
|
||||
|
||||
class Graph:
|
||||
def __init__(self, num):
|
||||
self.adjList = {} # To store graph: u -> (v,w)
|
||||
self.num_nodes = num # Number of nodes in graph
|
||||
# To store the distance from source vertex
|
||||
self.dist = [0] * self.num_nodes
|
||||
self.par = [-1] * self.num_nodes # To store the path
|
||||
|
||||
def add_edge(self, u, v, w):
|
||||
# Edge going from node u to v and v to u with weight w
|
||||
# u (w)-> v, v (w) -> u
|
||||
# Check if u already in graph
|
||||
if u in self.adjList.keys():
|
||||
self.adjList[u].append((v, w))
|
||||
else:
|
||||
self.adjList[u] = [(v, w)]
|
||||
|
||||
# Assuming undirected graph
|
||||
if v in self.adjList.keys():
|
||||
self.adjList[v].append((u, w))
|
||||
else:
|
||||
self.adjList[v] = [(u, w)]
|
||||
|
||||
def show_graph(self):
|
||||
# u -> v(w)
|
||||
for u in self.adjList:
|
||||
print(u, '->', ' -> '.join(str("{}({})".format(v, w))
|
||||
for v, w in self.adjList[u]))
|
||||
|
||||
def dijkstra(self, src):
|
||||
# Flush old junk values in par[]
|
||||
self.par = [-1] * self.num_nodes
|
||||
# src is the source node
|
||||
self.dist[src] = 0
|
||||
Q = PriorityQueue()
|
||||
Q.insert((0, src)) # (dist from src, node)
|
||||
for u in self.adjList.keys():
|
||||
if u != src:
|
||||
self.dist[u] = sys.maxsize # Infinity
|
||||
self.par[u] = -1
|
||||
|
||||
while not Q.isEmpty():
|
||||
u = Q.extract_min() # Returns node with the min dist from source
|
||||
# Update the distance of all the neighbours of u and
|
||||
# if their prev dist was INFINITY then push them in Q
|
||||
for v, w in self.adjList[u]:
|
||||
new_dist = self.dist[u] + w
|
||||
if self.dist[v] > new_dist:
|
||||
if self.dist[v] == sys.maxsize:
|
||||
Q.insert((new_dist, v))
|
||||
else:
|
||||
Q.decrease_key((self.dist[v], v), new_dist)
|
||||
self.dist[v] = new_dist
|
||||
self.par[v] = u
|
||||
|
||||
# Show the shortest distances from src
|
||||
self.show_distances(src)
|
||||
|
||||
def show_distances(self, src):
|
||||
print("Distance from node: {}".format(src))
|
||||
for u in range(self.num_nodes):
|
||||
print('Node {} has distance: {}'.format(u, self.dist[u]))
|
||||
|
||||
def show_path(self, src, dest):
|
||||
# To show the shortest path from src to dest
|
||||
# WARNING: Use it *after* calling dijkstra
|
||||
path = []
|
||||
cost = 0
|
||||
temp = dest
|
||||
# Backtracking from dest to src
|
||||
while self.par[temp] != -1:
|
||||
path.append(temp)
|
||||
if temp != src:
|
||||
for v, w in self.adjList[temp]:
|
||||
if v == self.par[temp]:
|
||||
cost += w
|
||||
break
|
||||
temp = self.par[temp]
|
||||
path.append(src)
|
||||
path.reverse()
|
||||
|
||||
print('----Path to reach {} from {}----'.format(dest, src))
|
||||
for u in path:
|
||||
print('{}'.format(u), end=' ')
|
||||
if u != dest:
|
||||
print('-> ', end='')
|
||||
|
||||
print('\nTotal cost of path: ', cost)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
graph = Graph(9)
|
||||
graph.add_edge(0, 1, 4)
|
||||
graph.add_edge(0, 7, 8)
|
||||
graph.add_edge(1, 2, 8)
|
||||
graph.add_edge(1, 7, 11)
|
||||
graph.add_edge(2, 3, 7)
|
||||
graph.add_edge(2, 8, 2)
|
||||
graph.add_edge(2, 5, 4)
|
||||
graph.add_edge(3, 4, 9)
|
||||
graph.add_edge(3, 5, 14)
|
||||
graph.add_edge(4, 5, 10)
|
||||
graph.add_edge(5, 6, 2)
|
||||
graph.add_edge(6, 7, 1)
|
||||
graph.add_edge(6, 8, 6)
|
||||
graph.add_edge(7, 8, 7)
|
||||
graph.show_graph()
|
||||
graph.dijkstra(0)
|
||||
graph.show_path(0, 4)
|
||||
|
||||
# OUTPUT
|
||||
# 0 -> 1(4) -> 7(8)
|
||||
# 1 -> 0(4) -> 2(8) -> 7(11)
|
||||
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
|
||||
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
|
||||
# 3 -> 2(7) -> 4(9) -> 5(14)
|
||||
# 8 -> 2(2) -> 6(6) -> 7(7)
|
||||
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
|
||||
# 4 -> 3(9) -> 5(10)
|
||||
# 6 -> 5(2) -> 7(1) -> 8(6)
|
||||
# Distance from node: 0
|
||||
# Node 0 has distance: 0
|
||||
# Node 1 has distance: 4
|
||||
# Node 2 has distance: 12
|
||||
# Node 3 has distance: 19
|
||||
# Node 4 has distance: 21
|
||||
# Node 5 has distance: 11
|
||||
# Node 6 has distance: 9
|
||||
# Node 7 has distance: 8
|
||||
# Node 8 has distance: 14
|
||||
# ----Path to reach 4 from 0----
|
||||
# 0 -> 7 -> 6 -> 5 -> 4
|
||||
# Total cost of path: 21
|
83
data_structures/Heap/heap.py
Normal file
83
data_structures/Heap/heap.py
Normal file
|
@ -0,0 +1,83 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
class Heap:
|
||||
def __init__(self):
|
||||
self.h = []
|
||||
self.currsize = 0
|
||||
|
||||
def leftChild(self,i):
|
||||
if 2*i+1 < self.currsize:
|
||||
return 2*i+1
|
||||
return None
|
||||
|
||||
def rightChild(self,i):
|
||||
if 2*i+2 < self.currsize:
|
||||
return 2*i+2
|
||||
return None
|
||||
|
||||
def maxHeapify(self,node):
|
||||
if node < self.currsize:
|
||||
m = node
|
||||
lc = self.leftChild(node)
|
||||
rc = self.rightChild(node)
|
||||
if lc is not None and self.h[lc] > self.h[m]:
|
||||
m = lc
|
||||
if rc is not None and self.h[rc] > self.h[m]:
|
||||
m = rc
|
||||
if m!=node:
|
||||
temp = self.h[node]
|
||||
self.h[node] = self.h[m]
|
||||
self.h[m] = temp
|
||||
self.maxHeapify(m)
|
||||
|
||||
def buildHeap(self,a):
|
||||
self.currsize = len(a)
|
||||
self.h = list(a)
|
||||
for i in range(self.currsize/2,-1,-1):
|
||||
self.maxHeapify(i)
|
||||
|
||||
def getMax(self):
|
||||
if self.currsize >= 1:
|
||||
me = self.h[0]
|
||||
temp = self.h[0]
|
||||
self.h[0] = self.h[self.currsize-1]
|
||||
self.h[self.currsize-1] = temp
|
||||
self.currsize -= 1
|
||||
self.maxHeapify(0)
|
||||
return me
|
||||
return None
|
||||
|
||||
def heapSort(self):
|
||||
size = self.currsize
|
||||
while self.currsize-1 >= 0:
|
||||
temp = self.h[0]
|
||||
self.h[0] = self.h[self.currsize-1]
|
||||
self.h[self.currsize-1] = temp
|
||||
self.currsize -= 1
|
||||
self.maxHeapify(0)
|
||||
self.currsize = size
|
||||
|
||||
def insert(self,data):
|
||||
self.h.append(data)
|
||||
curr = self.currsize
|
||||
self.currsize+=1
|
||||
while self.h[curr] > self.h[curr/2]:
|
||||
temp = self.h[curr/2]
|
||||
self.h[curr/2] = self.h[curr]
|
||||
self.h[curr] = temp
|
||||
curr = curr/2
|
||||
|
||||
def display(self):
|
||||
print (self.h)
|
||||
|
||||
def main():
|
||||
l = list(map(int,raw_input().split()))
|
||||
h = Heap()
|
||||
h.buildHeap(l)
|
||||
h.heapSort()
|
||||
h.display()
|
||||
|
||||
if __name__=='__main__':
|
||||
main()
|
||||
|
||||
|
73
data_structures/LinkedList/DoublyLinkedList.py
Normal file
73
data_structures/LinkedList/DoublyLinkedList.py
Normal file
|
@ -0,0 +1,73 @@
|
|||
'''
|
||||
- A linked list is similar to an array, it holds values. However, links in a linked list do not have indexes.
|
||||
- This is an example of a double ended, doubly linked list.
|
||||
- Each link references the next link and the previous one.
|
||||
'''
|
||||
class LinkedList:
|
||||
def __init__(self):
|
||||
self.head = None
|
||||
self.tail = None
|
||||
|
||||
def insertHead(self, x):
|
||||
newLink = Link(x) #Create a new link with a value attached to it
|
||||
if(self.isEmpty() == True): #Set the first element added to be the tail
|
||||
self.tail = newLink
|
||||
else:
|
||||
self.head.previous = newLink # newLink <-- currenthead(head)
|
||||
newLink.next = self.head # newLink <--> currenthead(head)
|
||||
self.head = newLink # newLink(head) <--> oldhead
|
||||
|
||||
def deleteHead(self):
|
||||
temp = self.head
|
||||
self.head = self.head.next # oldHead <--> 2ndElement(head)
|
||||
self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
|
||||
if(self.head == None):
|
||||
self.tail = None
|
||||
return temp
|
||||
|
||||
def insertTail(self, x):
|
||||
newLink = Link(x)
|
||||
newLink.next = None # currentTail(tail) newLink -->
|
||||
self.tail.next = newLink # currentTail(tail) --> newLink -->
|
||||
newLink.previous = self.tail #currentTail(tail) <--> newLink -->
|
||||
self.tail = newLink # oldTail <--> newLink(tail) -->
|
||||
|
||||
def deleteTail(self):
|
||||
temp = self.tail
|
||||
self.tail = self.tail.previous # 2ndLast(tail) <--> oldTail --> None
|
||||
self.tail.next = None # 2ndlast(tail) --> None
|
||||
return temp
|
||||
|
||||
def delete(self, x):
|
||||
current = self.head
|
||||
|
||||
while(current.value != x): # Find the position to delete
|
||||
current = current.next
|
||||
|
||||
if(current == self.head):
|
||||
self.deleteHead()
|
||||
|
||||
elif(current == self.tail):
|
||||
self.deleteTail()
|
||||
|
||||
else: #Before: 1 <--> 2(current) <--> 3
|
||||
current.previous.next = current.next # 1 --> 3
|
||||
current.next.previous = current.previous # 1 <--> 3
|
||||
|
||||
def isEmpty(self): #Will return True if the list is empty
|
||||
return(self.head == None)
|
||||
|
||||
def display(self): #Prints contents of the list
|
||||
current = self.head
|
||||
while(current != None):
|
||||
current.displayLink()
|
||||
current = current.next
|
||||
print()
|
||||
|
||||
class Link:
|
||||
next = None #This points to the link in front of the new link
|
||||
previous = None #This points to the link behind the new link
|
||||
def __init__(self, x):
|
||||
self.value = x
|
||||
def displayLink(self):
|
||||
print("{}".format(self.value), end=" ")
|
22
data_structures/LinkedList/__init__.py
Normal file
22
data_structures/LinkedList/__init__.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
class Node:
|
||||
def __init__(self, item, next):
|
||||
self.item = item
|
||||
self.next = next
|
||||
|
||||
class LinkedList:
|
||||
def __init__(self):
|
||||
self.head = None
|
||||
|
||||
def add(self, item):
|
||||
self.head = Node(item, self.head)
|
||||
|
||||
def remove(self):
|
||||
if self.is_empty():
|
||||
return None
|
||||
else:
|
||||
item = self.head.item
|
||||
self.head = self.head.next
|
||||
return item
|
||||
|
||||
def is_empty(self):
|
||||
return self.head == None
|
50
data_structures/LinkedList/singly_LinkedList.py
Normal file
50
data_structures/LinkedList/singly_LinkedList.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
class Node:#create a Node
|
||||
def __int__(self,data):
|
||||
self.data=data#given data
|
||||
self.next=None#given next to None
|
||||
class Linked_List:
|
||||
|
||||
pass
|
||||
|
||||
def insert_tail(Head,data):
|
||||
if(Head.next is None):
|
||||
Head.next = Node(data)
|
||||
else:
|
||||
insert_tail(Head.next, data)
|
||||
|
||||
def insert_head(Head,data):
|
||||
tamp = Head
|
||||
if (tamp == None):
|
||||
newNod = Node()#create a new Node
|
||||
newNod.data = data
|
||||
newNod.next = None
|
||||
Head = newNod#make new node to Head
|
||||
else:
|
||||
newNod = Node()
|
||||
newNod.data = data
|
||||
newNod.next = Head#put the Head at NewNode Next
|
||||
Head=newNod#make a NewNode to Head
|
||||
return Head
|
||||
|
||||
def printList(Head):#print every node data
|
||||
tamp=Head
|
||||
while tamp!=None:
|
||||
print(tamp.data)
|
||||
tamp=tamp.next
|
||||
|
||||
def delete_head(Head):#delete from head
|
||||
if Head!=None:
|
||||
Head=Head.next
|
||||
return Head#return new Head
|
||||
|
||||
def delete_tail(Head):#delete from tail
|
||||
if Head!=None:
|
||||
tamp = Node()
|
||||
tamp = Head
|
||||
while (tamp.next).next!= None:#find the 2nd last element
|
||||
tamp = tamp.next
|
||||
tamp.next=None#delete the last element by give next None to 2nd last Element
|
||||
return Head
|
||||
|
||||
def isEmpty(Head):
|
||||
return Head is None #Return if Head is none
|
39
data_structures/Queue/DeQueue.py
Normal file
39
data_structures/Queue/DeQueue.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
# Python code to demonstrate working of
|
||||
# extend(), extendleft(), rotate(), reverse()
|
||||
|
||||
# importing "collections" for deque operations
|
||||
import collections
|
||||
|
||||
# initializing deque
|
||||
de = collections.deque([1, 2, 3,])
|
||||
|
||||
# using extend() to add numbers to right end
|
||||
# adds 4,5,6 to right end
|
||||
de.extend([4,5,6])
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after extending deque at end is : ")
|
||||
print (de)
|
||||
|
||||
# using extendleft() to add numbers to left end
|
||||
# adds 7,8,9 to right end
|
||||
de.extendleft([7,8,9])
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after extending deque at beginning is : ")
|
||||
print (de)
|
||||
|
||||
# using rotate() to rotate the deque
|
||||
# rotates by 3 to left
|
||||
de.rotate(-3)
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after rotating deque is : ")
|
||||
print (de)
|
||||
|
||||
# using reverse() to reverse the deque
|
||||
de.reverse()
|
||||
|
||||
# printing modified deque
|
||||
print ("The deque after reversing deque is : ")
|
||||
print (de)
|
45
data_structures/Queue/QueueOnList.py
Normal file
45
data_structures/Queue/QueueOnList.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
"""Queue represented by a python list"""
|
||||
class Queue():
|
||||
def __init__(self):
|
||||
self.entries = []
|
||||
self.length = 0
|
||||
self.front=0
|
||||
|
||||
def __str__(self):
|
||||
printed = '<' + str(self.entries)[1:-1] + '>'
|
||||
return printed
|
||||
|
||||
"""Enqueues {@code item}
|
||||
@param item
|
||||
item to enqueue"""
|
||||
def put(self, item):
|
||||
self.entries.append(item)
|
||||
self.length = self.length + 1
|
||||
|
||||
|
||||
"""Dequeues {@code item}
|
||||
@requirement: |self.length| > 0
|
||||
@return dequeued
|
||||
item that was dequeued"""
|
||||
def get(self):
|
||||
self.length = self.length - 1
|
||||
dequeued = self.entries[self.front]
|
||||
self.front-=1
|
||||
self.entries = self.entries[self.front:]
|
||||
return dequeued
|
||||
|
||||
"""Rotates the queue {@code rotation} times
|
||||
@param rotation
|
||||
number of times to rotate queue"""
|
||||
def rotate(self, rotation):
|
||||
for i in range(rotation):
|
||||
self.put(self.get())
|
||||
|
||||
"""Enqueues {@code item}
|
||||
@return item at front of self.entries"""
|
||||
def front(self):
|
||||
return self.entries[0]
|
||||
|
||||
"""Returns the length of this.entries"""
|
||||
def size(self):
|
||||
return self.length
|
50
data_structures/Queue/QueueOnPseudoStack.py
Normal file
50
data_structures/Queue/QueueOnPseudoStack.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
"""Queue represented by a pseudo stack (represented by a list with pop and append)"""
|
||||
class Queue():
|
||||
def __init__(self):
|
||||
self.stack = []
|
||||
self.length = 0
|
||||
|
||||
def __str__(self):
|
||||
printed = '<' + str(self.stack)[1:-1] + '>'
|
||||
return printed
|
||||
|
||||
"""Enqueues {@code item}
|
||||
@param item
|
||||
item to enqueue"""
|
||||
def put(self, item):
|
||||
self.stack.append(item)
|
||||
self.length = self.length + 1
|
||||
|
||||
"""Dequeues {@code item}
|
||||
@requirement: |self.length| > 0
|
||||
@return dequeued
|
||||
item that was dequeued"""
|
||||
def get(self):
|
||||
self.rotate(1)
|
||||
dequeued = self.stack[self.length-1]
|
||||
self.stack = self.stack[:-1]
|
||||
self.rotate(self.length-1)
|
||||
self.length = self.length -1
|
||||
return dequeued
|
||||
|
||||
"""Rotates the queue {@code rotation} times
|
||||
@param rotation
|
||||
number of times to rotate queue"""
|
||||
def rotate(self, rotation):
|
||||
for i in range(rotation):
|
||||
temp = self.stack[0]
|
||||
self.stack = self.stack[1:]
|
||||
self.put(temp)
|
||||
self.length = self.length - 1
|
||||
|
||||
"""Reports item at the front of self
|
||||
@return item at front of self.stack"""
|
||||
def front(self):
|
||||
front = self.get()
|
||||
self.put(front)
|
||||
self.rotate(self.length-1)
|
||||
return front
|
||||
|
||||
"""Returns the length of this.stack"""
|
||||
def size(self):
|
||||
return self.length
|
0
data_structures/Queue/__init__.py
Normal file
0
data_structures/Queue/__init__.py
Normal file
23
data_structures/Stacks/__init__.py
Normal file
23
data_structures/Stacks/__init__.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
class Stack:
|
||||
|
||||
def __init__(self):
|
||||
self.stack = []
|
||||
self.top = 0
|
||||
|
||||
def is_empty(self):
|
||||
return (self.top == 0)
|
||||
|
||||
def push(self, item):
|
||||
if self.top < len(self.stack):
|
||||
self.stack[self.top] = item
|
||||
else:
|
||||
self.stack.append(item)
|
||||
|
||||
self.top += 1
|
||||
|
||||
def pop(self):
|
||||
if self.is_empty():
|
||||
return None
|
||||
else:
|
||||
self.top -= 1
|
||||
return self.stack[self.top]
|
21
data_structures/Stacks/balanced_parentheses.py
Normal file
21
data_structures/Stacks/balanced_parentheses.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
from Stack import Stack
|
||||
|
||||
__author__ = 'Omkar Pathak'
|
||||
|
||||
|
||||
def balanced_parentheses(parentheses):
|
||||
""" Use a stack to check if a string of parentheses are balanced."""
|
||||
stack = Stack(len(parentheses))
|
||||
for parenthesis in parentheses:
|
||||
if parenthesis == '(':
|
||||
stack.push(parenthesis)
|
||||
elif parenthesis == ')':
|
||||
stack.pop()
|
||||
return not stack.is_empty()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
examples = ['((()))', '((())']
|
||||
print('Balanced parentheses demonstration:\n')
|
||||
for example in examples:
|
||||
print(example + ': ' + str(balanced_parentheses(example)))
|
62
data_structures/Stacks/infix_to_postfix_conversion.py
Normal file
62
data_structures/Stacks/infix_to_postfix_conversion.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
import string
|
||||
|
||||
from Stack import Stack
|
||||
|
||||
__author__ = 'Omkar Pathak'
|
||||
|
||||
|
||||
def is_operand(char):
|
||||
return char in string.ascii_letters or char in string.digits
|
||||
|
||||
|
||||
def precedence(char):
|
||||
""" Return integer value representing an operator's precedence, or
|
||||
order of operation.
|
||||
|
||||
https://en.wikipedia.org/wiki/Order_of_operations
|
||||
"""
|
||||
dictionary = {'+': 1, '-': 1,
|
||||
'*': 2, '/': 2,
|
||||
'^': 3}
|
||||
return dictionary.get(char, -1)
|
||||
|
||||
|
||||
def infix_to_postfix(expression):
|
||||
""" Convert infix notation to postfix notation using the Shunting-yard
|
||||
algorithm.
|
||||
|
||||
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
|
||||
https://en.wikipedia.org/wiki/Infix_notation
|
||||
https://en.wikipedia.org/wiki/Reverse_Polish_notation
|
||||
"""
|
||||
stack = Stack(len(expression))
|
||||
postfix = []
|
||||
for char in expression:
|
||||
if is_operand(char):
|
||||
postfix.append(char)
|
||||
elif char not in {'(', ')'}:
|
||||
while (not stack.is_empty()
|
||||
and precedence(char) <= precedence(stack.peek())):
|
||||
postfix.append(stack.pop())
|
||||
stack.push(char)
|
||||
elif char == '(':
|
||||
stack.push(char)
|
||||
elif char == ')':
|
||||
while not stack.is_empty() and stack.peek() != '(':
|
||||
postfix.append(stack.pop())
|
||||
# Pop '(' from stack. If there is no '(', there is a mismatched
|
||||
# parentheses.
|
||||
if stack.peek() != '(':
|
||||
raise ValueError('Mismatched parentheses')
|
||||
stack.pop()
|
||||
while not stack.is_empty():
|
||||
postfix.append(stack.pop())
|
||||
return ' '.join(postfix)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
expression = 'a+b*(c^d-e)^(f+g*h)-i'
|
||||
|
||||
print('Infix to Postfix Notation demonstration:\n')
|
||||
print('Infix notation: ' + expression)
|
||||
print('Postfix notation: ' + infix_to_postfix(expression))
|
16
data_structures/Stacks/next.py
Normal file
16
data_structures/Stacks/next.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# Function to print element and NGE pair for all elements of list
|
||||
def printNGE(arr):
|
||||
|
||||
for i in range(0, len(arr), 1):
|
||||
|
||||
next = -1
|
||||
for j in range(i+1, len(arr), 1):
|
||||
if arr[i] < arr[j]:
|
||||
next = arr[j]
|
||||
break
|
||||
|
||||
print(str(arr[i]) + " -- " + str(next))
|
||||
|
||||
# Driver program to test above function
|
||||
arr = [11,13,21,3]
|
||||
printNGE(arr)
|
68
data_structures/Stacks/stack.py
Normal file
68
data_structures/Stacks/stack.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
__author__ = 'Omkar Pathak'
|
||||
|
||||
|
||||
class Stack(object):
|
||||
""" A stack is an abstract data type that serves as a collection of
|
||||
elements with two principal operations: push() and pop(). push() adds an
|
||||
element to the top of the stack, and pop() removes an element from the top
|
||||
of a stack. The order in which elements come off of a stack are
|
||||
Last In, First Out (LIFO).
|
||||
|
||||
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
|
||||
"""
|
||||
|
||||
def __init__(self, limit=10):
|
||||
self.stack = []
|
||||
self.limit = limit
|
||||
|
||||
def __bool__(self):
|
||||
return not bool(self.stack)
|
||||
|
||||
def __str__(self):
|
||||
return str(self.stack)
|
||||
|
||||
def push(self, data):
|
||||
""" Push an element to the top of the stack."""
|
||||
if len(self.stack) >= self.limit:
|
||||
raise StackOverflowError
|
||||
self.stack.append(data)
|
||||
|
||||
def pop(self):
|
||||
""" Pop an element off of the top of the stack."""
|
||||
if self.stack:
|
||||
return self.stack.pop()
|
||||
else:
|
||||
raise IndexError('pop from an empty stack')
|
||||
|
||||
def peek(self):
|
||||
""" Peek at the top-most element of the stack."""
|
||||
if self.stack:
|
||||
return self.stack[-1]
|
||||
|
||||
def is_empty(self):
|
||||
""" Check if a stack is empty."""
|
||||
return not bool(self.stack)
|
||||
|
||||
def size(self):
|
||||
""" Return the size of the stack."""
|
||||
return len(self.stack)
|
||||
|
||||
|
||||
class StackOverflowError(BaseException):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
stack = Stack()
|
||||
for i in range(10):
|
||||
stack.push(i)
|
||||
|
||||
print('Stack demonstration:\n')
|
||||
print('Initial stack: ' + str(stack))
|
||||
print('pop(): ' + str(stack.pop()))
|
||||
print('After pop(), the stack is now: ' + str(stack))
|
||||
print('peek(): ' + str(stack.peek()))
|
||||
stack.push(100)
|
||||
print('After push(100), the stack is now: ' + str(stack))
|
||||
print('is_empty(): ' + str(stack.is_empty()))
|
||||
print('size(): ' + str(stack.size()))
|
75
data_structures/Trie/Trie.py
Normal file
75
data_structures/Trie/Trie.py
Normal file
|
@ -0,0 +1,75 @@
|
|||
"""
|
||||
A Trie/Prefix Tree is a kind of search tree used to provide quick lookup
|
||||
of words/patterns in a set of words. A basic Trie however has O(n^2) space complexity
|
||||
making it impractical in practice. It however provides O(max(search_string, length of longest word)) lookup
|
||||
time making it an optimal approach when space is not an issue.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class TrieNode:
|
||||
def __init__(self):
|
||||
self.nodes = dict() # Mapping from char to TrieNode
|
||||
self.is_leaf = False
|
||||
|
||||
def insert_many(self, words: [str]):
|
||||
"""
|
||||
Inserts a list of words into the Trie
|
||||
:param words: list of string words
|
||||
:return: None
|
||||
"""
|
||||
for word in words:
|
||||
self.insert(word)
|
||||
|
||||
def insert(self, word: str):
|
||||
"""
|
||||
Inserts a word into the Trie
|
||||
:param word: word to be inserted
|
||||
:return: None
|
||||
"""
|
||||
curr = self
|
||||
for char in word:
|
||||
if char not in curr.nodes:
|
||||
curr.nodes[char] = TrieNode()
|
||||
curr = curr.nodes[char]
|
||||
curr.is_leaf = True
|
||||
|
||||
def find(self, word: str) -> bool:
|
||||
"""
|
||||
Tries to find word in a Trie
|
||||
:param word: word to look for
|
||||
:return: Returns True if word is found, False otherwise
|
||||
"""
|
||||
curr = self
|
||||
for char in word:
|
||||
if char not in curr.nodes:
|
||||
return False
|
||||
curr = curr.nodes[char]
|
||||
return curr.is_leaf
|
||||
|
||||
|
||||
def print_words(node: TrieNode, word: str):
|
||||
"""
|
||||
Prints all the words in a Trie
|
||||
:param node: root node of Trie
|
||||
:param word: Word variable should be empty at start
|
||||
:return: None
|
||||
"""
|
||||
if node.is_leaf:
|
||||
print(word, end=' ')
|
||||
|
||||
for key, value in node.nodes.items():
|
||||
print_words(value, word + key)
|
||||
|
||||
|
||||
def test():
|
||||
words = ['banana', 'bananas', 'bandana', 'band', 'apple', 'all', 'beast']
|
||||
root = TrieNode()
|
||||
root.insert_many(words)
|
||||
# print_words(root, '')
|
||||
assert root.find('banana')
|
||||
assert not root.find('bandanas')
|
||||
assert not root.find('apps')
|
||||
assert root.find('apple')
|
||||
|
||||
test()
|
0
data_structures/__init__.py
Normal file
0
data_structures/__init__.py
Normal file
37
dynamic_programming/FloydWarshall.py
Normal file
37
dynamic_programming/FloydWarshall.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
import math
|
||||
|
||||
class Graph:
|
||||
|
||||
def __init__(self, N = 0): # a graph with Node 0,1,...,N-1
|
||||
self.N = N
|
||||
self.W = [[math.inf for j in range(0,N)] for i in range(0,N)] # adjacency matrix for weight
|
||||
self.dp = [[math.inf for j in range(0,N)] for i in range(0,N)] # dp[i][j] stores minimum distance from i to j
|
||||
|
||||
def addEdge(self, u, v, w):
|
||||
self.dp[u][v] = w;
|
||||
|
||||
def floyd_warshall(self):
|
||||
for k in range(0,self.N):
|
||||
for i in range(0,self.N):
|
||||
for j in range(0,self.N):
|
||||
self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j])
|
||||
|
||||
def showMin(self, u, v):
|
||||
return self.dp[u][v]
|
||||
|
||||
if __name__ == '__main__':
|
||||
graph = Graph(5)
|
||||
graph.addEdge(0,2,9)
|
||||
graph.addEdge(0,4,10)
|
||||
graph.addEdge(1,3,5)
|
||||
graph.addEdge(2,3,7)
|
||||
graph.addEdge(3,0,10)
|
||||
graph.addEdge(3,1,2)
|
||||
graph.addEdge(3,2,1)
|
||||
graph.addEdge(3,4,6)
|
||||
graph.addEdge(4,1,3)
|
||||
graph.addEdge(4,2,4)
|
||||
graph.addEdge(4,3,9)
|
||||
graph.floyd_warshall()
|
||||
graph.showMin(1,4)
|
||||
graph.showMin(0,3)
|
74
dynamic_programming/edit_distance.py
Normal file
74
dynamic_programming/edit_distance.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
"""
|
||||
Author : Turfa Auliarachman
|
||||
Date : October 12, 2016
|
||||
|
||||
This is a pure Python implementation of Dynamic Programming solution to the edit distance problem.
|
||||
|
||||
The problem is :
|
||||
Given two strings A and B. Find the minimum number of operations to string B such that A = B. The permitted operations are removal, insertion, and substitution.
|
||||
"""
|
||||
|
||||
class EditDistance:
|
||||
"""
|
||||
Use :
|
||||
solver = EditDistance()
|
||||
editDistanceResult = solver.solve(firstString, secondString)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.__prepare__()
|
||||
|
||||
def __prepare__(self, N = 0, M = 0):
|
||||
self.dp = [[-1 for y in range(0,M)] for x in range(0,N)]
|
||||
|
||||
def __solveDP(self, x, y):
|
||||
if (x==-1):
|
||||
return y+1
|
||||
elif (y==-1):
|
||||
return x+1
|
||||
elif (self.dp[x][y]>-1):
|
||||
return self.dp[x][y]
|
||||
else:
|
||||
if (self.A[x]==self.B[y]):
|
||||
self.dp[x][y] = self.__solveDP(x-1,y-1)
|
||||
else:
|
||||
self.dp[x][y] = 1+min(self.__solveDP(x,y-1), self.__solveDP(x-1,y), self.__solveDP(x-1,y-1))
|
||||
|
||||
return self.dp[x][y]
|
||||
|
||||
def solve(self, A, B):
|
||||
if isinstance(A,bytes):
|
||||
A = A.decode('ascii')
|
||||
|
||||
if isinstance(B,bytes):
|
||||
B = B.decode('ascii')
|
||||
|
||||
self.A = str(A)
|
||||
self.B = str(B)
|
||||
|
||||
self.__prepare__(len(A), len(B))
|
||||
|
||||
return self.__solveDP(len(A)-1, len(B)-1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
solver = EditDistance()
|
||||
|
||||
print("****************** Testing Edit Distance DP Algorithm ******************")
|
||||
print()
|
||||
|
||||
print("Enter the first string: ", end="")
|
||||
S1 = input_function()
|
||||
|
||||
print("Enter the second string: ", end="")
|
||||
S2 = input_function()
|
||||
|
||||
print()
|
||||
print("The minimum Edit Distance is: %d" % (solver.solve(S1, S2)))
|
||||
print()
|
||||
print("*************** End of Testing Edit Distance DP Algorithm ***************")
|
42
dynamic_programming/fastfibonacci.py
Normal file
42
dynamic_programming/fastfibonacci.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
"""
|
||||
This program calculates the nth Fibonacci number in O(log(n)).
|
||||
It's possible to calculate F(1000000) in less than a second.
|
||||
"""
|
||||
import sys
|
||||
|
||||
|
||||
# returns F(n)
|
||||
def fibonacci(n: int):
|
||||
if n < 0:
|
||||
raise ValueError("Negative arguments are not supported")
|
||||
return _fib(n)[0]
|
||||
|
||||
|
||||
# returns (F(n), F(n-1))
|
||||
def _fib(n: int):
|
||||
if n == 0:
|
||||
# (F(0), F(1))
|
||||
return (0, 1)
|
||||
else:
|
||||
# F(2n) = F(n)[2F(n+1) − F(n)]
|
||||
# F(2n+1) = F(n+1)^2+F(n)^2
|
||||
a, b = _fib(n // 2)
|
||||
c = a * (b * 2 - a)
|
||||
d = a * a + b * b
|
||||
if n % 2 == 0:
|
||||
return (c, d)
|
||||
else:
|
||||
return (d, c + d)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = sys.argv[1:]
|
||||
if len(args) != 1:
|
||||
print("Too few or too much parameters given.")
|
||||
exit(1)
|
||||
try:
|
||||
n = int(args[0])
|
||||
except ValueError:
|
||||
print("Could not convert data to an integer.")
|
||||
exit(1)
|
||||
print("F(%d) = %d" % (n, fibonacci(n)))
|
57
dynamic_programming/fibonacci.py
Normal file
57
dynamic_programming/fibonacci.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
"""
|
||||
This is a pure Python implementation of Dynamic Programming solution to the fibonacci sequence problem.
|
||||
"""
|
||||
|
||||
|
||||
class Fibonacci:
|
||||
|
||||
def __init__(self, N=None):
|
||||
self.fib_array = []
|
||||
if N:
|
||||
N = int(N)
|
||||
self.fib_array.append(0)
|
||||
self.fib_array.append(1)
|
||||
for i in range(2, N + 1):
|
||||
self.fib_array.append(self.fib_array[i - 1] + self.fib_array[i - 2])
|
||||
elif N == 0:
|
||||
self.fib_array.append(0)
|
||||
|
||||
def get(self, sequence_no=None):
|
||||
if sequence_no != None:
|
||||
if sequence_no < len(self.fib_array):
|
||||
return print(self.fib_array[:sequence_no + 1])
|
||||
else:
|
||||
print("Out of bound.")
|
||||
else:
|
||||
print("Please specify a value")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
print("\n********* Fibonacci Series Using Dynamic Programming ************\n")
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
print("\n Enter the upper limit for the fibonacci sequence: ", end="")
|
||||
try:
|
||||
N = eval(input())
|
||||
fib = Fibonacci(N)
|
||||
print(
|
||||
"\n********* Enter different values to get the corresponding fibonacci sequence, enter any negative number to exit. ************\n")
|
||||
while True:
|
||||
print("Enter value: ", end=" ")
|
||||
try:
|
||||
i = eval(input())
|
||||
if i < 0:
|
||||
print("\n********* Good Bye!! ************\n")
|
||||
break
|
||||
fib.get(i)
|
||||
except NameError:
|
||||
print("\nInvalid input, please try again.")
|
||||
except NameError:
|
||||
print("\n********* Invalid input, good bye!! ************\n")
|
141
dynamic_programming/k_means_clustering_tensorflow.py
Normal file
141
dynamic_programming/k_means_clustering_tensorflow.py
Normal file
|
@ -0,0 +1,141 @@
|
|||
import tensorflow as tf
|
||||
from random import choice, shuffle
|
||||
from numpy import array
|
||||
|
||||
|
||||
def TFKMeansCluster(vectors, noofclusters):
|
||||
"""
|
||||
K-Means Clustering using TensorFlow.
|
||||
'vectors' should be a n*k 2-D NumPy array, where n is the number
|
||||
of vectors of dimensionality k.
|
||||
'noofclusters' should be an integer.
|
||||
"""
|
||||
|
||||
noofclusters = int(noofclusters)
|
||||
assert noofclusters < len(vectors)
|
||||
|
||||
#Find out the dimensionality
|
||||
dim = len(vectors[0])
|
||||
|
||||
#Will help select random centroids from among the available vectors
|
||||
vector_indices = list(range(len(vectors)))
|
||||
shuffle(vector_indices)
|
||||
|
||||
#GRAPH OF COMPUTATION
|
||||
#We initialize a new graph and set it as the default during each run
|
||||
#of this algorithm. This ensures that as this function is called
|
||||
#multiple times, the default graph doesn't keep getting crowded with
|
||||
#unused ops and Variables from previous function calls.
|
||||
|
||||
graph = tf.Graph()
|
||||
|
||||
with graph.as_default():
|
||||
|
||||
#SESSION OF COMPUTATION
|
||||
|
||||
sess = tf.Session()
|
||||
|
||||
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
|
||||
|
||||
##First lets ensure we have a Variable vector for each centroid,
|
||||
##initialized to one of the vectors from the available data points
|
||||
centroids = [tf.Variable((vectors[vector_indices[i]]))
|
||||
for i in range(noofclusters)]
|
||||
##These nodes will assign the centroid Variables the appropriate
|
||||
##values
|
||||
centroid_value = tf.placeholder("float64", [dim])
|
||||
cent_assigns = []
|
||||
for centroid in centroids:
|
||||
cent_assigns.append(tf.assign(centroid, centroid_value))
|
||||
|
||||
##Variables for cluster assignments of individual vectors(initialized
|
||||
##to 0 at first)
|
||||
assignments = [tf.Variable(0) for i in range(len(vectors))]
|
||||
##These nodes will assign an assignment Variable the appropriate
|
||||
##value
|
||||
assignment_value = tf.placeholder("int32")
|
||||
cluster_assigns = []
|
||||
for assignment in assignments:
|
||||
cluster_assigns.append(tf.assign(assignment,
|
||||
assignment_value))
|
||||
|
||||
##Now lets construct the node that will compute the mean
|
||||
#The placeholder for the input
|
||||
mean_input = tf.placeholder("float", [None, dim])
|
||||
#The Node/op takes the input and computes a mean along the 0th
|
||||
#dimension, i.e. the list of input vectors
|
||||
mean_op = tf.reduce_mean(mean_input, 0)
|
||||
|
||||
##Node for computing Euclidean distances
|
||||
#Placeholders for input
|
||||
v1 = tf.placeholder("float", [dim])
|
||||
v2 = tf.placeholder("float", [dim])
|
||||
euclid_dist = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(
|
||||
v1, v2), 2)))
|
||||
|
||||
##This node will figure out which cluster to assign a vector to,
|
||||
##based on Euclidean distances of the vector from the centroids.
|
||||
#Placeholder for input
|
||||
centroid_distances = tf.placeholder("float", [noofclusters])
|
||||
cluster_assignment = tf.argmin(centroid_distances, 0)
|
||||
|
||||
##INITIALIZING STATE VARIABLES
|
||||
|
||||
##This will help initialization of all Variables defined with respect
|
||||
##to the graph. The Variable-initializer should be defined after
|
||||
##all the Variables have been constructed, so that each of them
|
||||
##will be included in the initialization.
|
||||
init_op = tf.initialize_all_variables()
|
||||
|
||||
#Initialize all variables
|
||||
sess.run(init_op)
|
||||
|
||||
##CLUSTERING ITERATIONS
|
||||
|
||||
#Now perform the Expectation-Maximization steps of K-Means clustering
|
||||
#iterations. To keep things simple, we will only do a set number of
|
||||
#iterations, instead of using a Stopping Criterion.
|
||||
noofiterations = 100
|
||||
for iteration_n in range(noofiterations):
|
||||
|
||||
##EXPECTATION STEP
|
||||
##Based on the centroid locations till last iteration, compute
|
||||
##the _expected_ centroid assignments.
|
||||
#Iterate over each vector
|
||||
for vector_n in range(len(vectors)):
|
||||
vect = vectors[vector_n]
|
||||
#Compute Euclidean distance between this vector and each
|
||||
#centroid. Remember that this list cannot be named
|
||||
#'centroid_distances', since that is the input to the
|
||||
#cluster assignment node.
|
||||
distances = [sess.run(euclid_dist, feed_dict={
|
||||
v1: vect, v2: sess.run(centroid)})
|
||||
for centroid in centroids]
|
||||
#Now use the cluster assignment node, with the distances
|
||||
#as the input
|
||||
assignment = sess.run(cluster_assignment, feed_dict = {
|
||||
centroid_distances: distances})
|
||||
#Now assign the value to the appropriate state variable
|
||||
sess.run(cluster_assigns[vector_n], feed_dict={
|
||||
assignment_value: assignment})
|
||||
|
||||
##MAXIMIZATION STEP
|
||||
#Based on the expected state computed from the Expectation Step,
|
||||
#compute the locations of the centroids so as to maximize the
|
||||
#overall objective of minimizing within-cluster Sum-of-Squares
|
||||
for cluster_n in range(noofclusters):
|
||||
#Collect all the vectors assigned to this cluster
|
||||
assigned_vects = [vectors[i] for i in range(len(vectors))
|
||||
if sess.run(assignments[i]) == cluster_n]
|
||||
#Compute new centroid location
|
||||
new_location = sess.run(mean_op, feed_dict={
|
||||
mean_input: array(assigned_vects)})
|
||||
#Assign value to appropriate variable
|
||||
sess.run(cent_assigns[cluster_n], feed_dict={
|
||||
centroid_value: new_location})
|
||||
|
||||
#Return centroids and assignments
|
||||
centroids = sess.run(centroids)
|
||||
assignments = sess.run(assignments)
|
||||
return centroids, assignments
|
||||
|
14
dynamic_programming/knapsack.py
Normal file
14
dynamic_programming/knapsack.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
"""
|
||||
Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack.
|
||||
"""
|
||||
def knapsack(W, wt, val, n):
|
||||
dp = [[0 for i in range(W+1)]for j in range(n+1)]
|
||||
|
||||
for i in range(1,n+1):
|
||||
for w in range(1,W+1):
|
||||
if(wt[i-1]<=w):
|
||||
dp[i][w] = max(val[i-1]+dp[i-1][w-wt[i-1]],dp[i-1][w])
|
||||
else:
|
||||
dp[i][w] = dp[i-1][w]
|
||||
|
||||
return dp[n][w]
|
48
dynamic_programming/longest common subsequence.py
Normal file
48
dynamic_programming/longest common subsequence.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
"""
|
||||
LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them.
|
||||
A subsequence is a sequence that appears in the same relative order, but not necessarily continious.
|
||||
Example:"abc", "abg" are subsequences of "abcdefgh".
|
||||
"""
|
||||
def LCS(x,y):
|
||||
b=[[] for j in range(len(x)+1)]
|
||||
c=[[] for i in range(len(x))]
|
||||
for i in range(len(x)+1):
|
||||
b[i].append(0)
|
||||
for i in range(1,len(y)+1):
|
||||
b[0].append(0)
|
||||
for i in range(len(x)):
|
||||
for j in range(len(y)):
|
||||
if x[i]==y[j]:
|
||||
b[i+1].append(b[i][j]+1)
|
||||
c[i].append('/')
|
||||
elif b[i][j+1]>=b[i+1][j]:
|
||||
b[i+1].append(b[i][j+1])
|
||||
c[i].append('|')
|
||||
else :
|
||||
b[i+1].append(b[i+1][j])
|
||||
c[i].append('-')
|
||||
return b,c
|
||||
|
||||
|
||||
def print_lcs(x,c,n,m):
|
||||
n,m=n-1,m-1
|
||||
ans=[]
|
||||
while n>=0 and m>=0:
|
||||
if c[n][m]=='/':
|
||||
ans.append(x[n])
|
||||
n,m=n-1,m-1
|
||||
elif c[n][m]=='|':
|
||||
n=n-1
|
||||
else:
|
||||
m=m-1
|
||||
ans=ans[::-1]
|
||||
return ans
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
x=['a','b','c','b','d','a','b']
|
||||
y=['b','d','c','a','b','a']
|
||||
b,c=LCS(x,y)
|
||||
print('Given \nX : ',x)
|
||||
print('Y : ',y)
|
||||
print('LCS : ',print_lcs(x,c,len(x),len(y)))
|
41
dynamic_programming/longest_increasing_subsequence.py
Normal file
41
dynamic_programming/longest_increasing_subsequence.py
Normal file
|
@ -0,0 +1,41 @@
|
|||
'''
|
||||
Author : Mehdi ALAOUI
|
||||
|
||||
This is a pure Python implementation of Dynamic Programming solution to the longest increasing subsequence of a given sequence.
|
||||
|
||||
The problem is :
|
||||
Given an ARRAY, to find the longest and increasing sub ARRAY in that given ARRAY and return it.
|
||||
Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return [10, 22, 33, 41, 60, 80] as output
|
||||
'''
|
||||
|
||||
def longestSub(ARRAY): #This function is recursive
|
||||
|
||||
ARRAY_LENGTH = len(ARRAY)
|
||||
if(ARRAY_LENGTH <= 1): #If the array contains only one element, we return it (it's the stop condition of recursion)
|
||||
return ARRAY
|
||||
#Else
|
||||
PIVOT=ARRAY[0]
|
||||
isFound=False
|
||||
i=1
|
||||
LONGEST_SUB=[]
|
||||
while(not isFound and i<ARRAY_LENGTH):
|
||||
if (ARRAY[i] < PIVOT):
|
||||
isFound=True
|
||||
TEMPORARY_ARRAY = [ element for element in ARRAY[i:] if element >= ARRAY[i] ]
|
||||
TEMPORARY_ARRAY = longestSub(TEMPORARY_ARRAY)
|
||||
if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ):
|
||||
LONGEST_SUB = TEMPORARY_ARRAY
|
||||
else:
|
||||
i+=1
|
||||
|
||||
TEMPORARY_ARRAY = [ element for element in ARRAY[1:] if element >= PIVOT ]
|
||||
TEMPORARY_ARRAY = [PIVOT] + longestSub(TEMPORARY_ARRAY)
|
||||
if ( len(TEMPORARY_ARRAY) > len(LONGEST_SUB) ):
|
||||
return TEMPORARY_ARRAY
|
||||
else:
|
||||
return LONGEST_SUB
|
||||
|
||||
#Some examples
|
||||
|
||||
print(longestSub([4,8,7,5,1,12,2,3,9]))
|
||||
print(longestSub([9,8,7,6,5,7]))
|
|
@ -0,0 +1,40 @@
|
|||
#############################
|
||||
# Author: Aravind Kashyap
|
||||
# File: lis.py
|
||||
# comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN)
|
||||
# Where N is the Number of elements in the list
|
||||
#############################
|
||||
def CeilIndex(v,l,r,key):
|
||||
while r-l > 1:
|
||||
m = (l + r)/2
|
||||
if v[m] >= key:
|
||||
r = m
|
||||
else:
|
||||
l = m
|
||||
|
||||
return r
|
||||
|
||||
|
||||
def LongestIncreasingSubsequenceLength(v):
|
||||
if(len(v) == 0):
|
||||
return 0
|
||||
|
||||
tail = [0]*len(v)
|
||||
length = 1
|
||||
|
||||
tail[0] = v[0]
|
||||
|
||||
for i in range(1,len(v)):
|
||||
if v[i] < tail[0]:
|
||||
tail[0] = v[i]
|
||||
elif v[i] > tail[length-1]:
|
||||
tail[length] = v[i]
|
||||
length += 1
|
||||
else:
|
||||
tail[CeilIndex(tail,-1,length-1,v[i])] = v[i]
|
||||
|
||||
return length
|
||||
|
||||
|
||||
v = [2, 5, 3, 7, 11, 8, 10, 13, 6]
|
||||
print LongestIncreasingSubsequenceLength(v)
|
32
dynamic_programming/longest_sub_array.py
Normal file
32
dynamic_programming/longest_sub_array.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
'''
|
||||
Auther : Yvonne
|
||||
|
||||
This is a pure Python implementation of Dynamic Programming solution to the longest_sub_array problem.
|
||||
|
||||
The problem is :
|
||||
Given an array, to find the longest and continuous sub array and get the max sum of the sub array in the given array.
|
||||
'''
|
||||
|
||||
|
||||
class SubArray:
|
||||
|
||||
def __init__(self, arr):
|
||||
# we need a list not a string, so do something to change the type
|
||||
self.array = arr.split(',')
|
||||
print("the input array is:", self.array)
|
||||
|
||||
def solve_sub_array(self):
|
||||
rear = [int(self.array[0])]*len(self.array)
|
||||
sum_value = [int(self.array[0])]*len(self.array)
|
||||
for i in range(1, len(self.array)):
|
||||
sum_value[i] = max(int(self.array[i]) + sum_value[i-1], int(self.array[i]))
|
||||
rear[i] = max(sum_value[i], rear[i-1])
|
||||
return rear[len(self.array)-1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
whole_array = input("please input some numbers:")
|
||||
array = SubArray(whole_array)
|
||||
re = array.solve_sub_array()
|
||||
print("the results is:", re)
|
||||
|
59
dynamic_programming/max_sub_array.py
Normal file
59
dynamic_programming/max_sub_array.py
Normal file
|
@ -0,0 +1,59 @@
|
|||
"""
|
||||
author : Mayank Kumar Jha (mk9440)
|
||||
"""
|
||||
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from random import randint
|
||||
def find_max_sub_array(A,low,high):
|
||||
if low==high:
|
||||
return low,high,A[low]
|
||||
else :
|
||||
mid=(low+high)//2
|
||||
left_low,left_high,left_sum=find_max_sub_array(A,low,mid)
|
||||
right_low,right_high,right_sum=find_max_sub_array(A,mid+1,high)
|
||||
cross_left,cross_right,cross_sum=find_max_cross_sum(A,low,mid,high)
|
||||
if left_sum>=right_sum and left_sum>=cross_sum:
|
||||
return left_low,left_high,left_sum
|
||||
elif right_sum>=left_sum and right_sum>=cross_sum :
|
||||
return right_low,right_high,right_sum
|
||||
else:
|
||||
return cross_left,cross_right,cross_sum
|
||||
|
||||
def find_max_cross_sum(A,low,mid,high):
|
||||
left_sum,max_left=-999999999,-1
|
||||
right_sum,max_right=-999999999,-1
|
||||
summ=0
|
||||
for i in range(mid,low-1,-1):
|
||||
summ+=A[i]
|
||||
if summ > left_sum:
|
||||
left_sum=summ
|
||||
max_left=i
|
||||
summ=0
|
||||
for i in range(mid+1,high+1):
|
||||
summ+=A[i]
|
||||
if summ > right_sum:
|
||||
right_sum=summ
|
||||
max_right=i
|
||||
return max_left,max_right,(left_sum+right_sum)
|
||||
|
||||
|
||||
if __name__=='__main__':
|
||||
inputs=[10,100,1000,10000,50000,100000,200000,300000,400000,500000]
|
||||
tim=[]
|
||||
for i in inputs:
|
||||
li=[randint(1,i) for j in range(i)]
|
||||
strt=time.time()
|
||||
(find_max_sub_array(li,0,len(li)-1))
|
||||
end=time.time()
|
||||
tim.append(end-strt)
|
||||
print("No of Inputs Time Taken")
|
||||
for i in range(len(inputs)):
|
||||
print(inputs[i],'\t\t',tim[i])
|
||||
plt.plot(inputs,tim)
|
||||
plt.xlabel("Number of Inputs");plt.ylabel("Time taken in seconds ")
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
28
dynamic_programming/minimum_partition.py
Normal file
28
dynamic_programming/minimum_partition.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
"""
|
||||
Partition a set into two subsets such that the difference of subset sums is minimum
|
||||
"""
|
||||
def findMin(arr):
|
||||
n = len(arr)
|
||||
s = sum(arr)
|
||||
|
||||
dp = [[False for x in range(s+1)]for y in range(n+1)]
|
||||
|
||||
for i in range(1, n+1):
|
||||
dp[i][0] = True
|
||||
|
||||
for i in range(1, s+1):
|
||||
dp[0][i] = False
|
||||
|
||||
for i in range(1, n+1):
|
||||
for j in range(1, s+1):
|
||||
dp[i][j]= dp[i][j-1]
|
||||
|
||||
if (arr[i-1] <= j):
|
||||
dp[i][j] = dp[i][j] or dp[i-1][j-arr[i-1]]
|
||||
|
||||
for j in range(s/2, -1, -1):
|
||||
if dp[n][j] == True:
|
||||
diff = s-2*j
|
||||
break;
|
||||
|
||||
return diff
|
107
hashes/md5.py
Normal file
107
hashes/md5.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
import math
|
||||
|
||||
def rearrange(bitString32):
|
||||
if len(bitString32) != 32:
|
||||
raise ValueError("Need length 32")
|
||||
newString = ""
|
||||
for i in [3,2,1,0]:
|
||||
newString += bitString32[8*i:8*i+8]
|
||||
return newString
|
||||
|
||||
def reformatHex(i):
|
||||
hexrep = format(i,'08x')
|
||||
thing = ""
|
||||
for i in [3,2,1,0]:
|
||||
thing += hexrep[2*i:2*i+2]
|
||||
return thing
|
||||
|
||||
def pad(bitString):
|
||||
startLength = len(bitString)
|
||||
bitString += '1'
|
||||
while len(bitString) % 512 != 448:
|
||||
bitString += '0'
|
||||
lastPart = format(startLength,'064b')
|
||||
bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32])
|
||||
return bitString
|
||||
|
||||
def getBlock(bitString):
|
||||
currPos = 0
|
||||
while currPos < len(bitString):
|
||||
currPart = bitString[currPos:currPos+512]
|
||||
mySplits = []
|
||||
for i in range(16):
|
||||
mySplits.append(int(rearrange(currPart[32*i:32*i+32]),2))
|
||||
yield mySplits
|
||||
currPos += 512
|
||||
def not32(i):
|
||||
i_str = format(i,'032b')
|
||||
new_str = ''
|
||||
for c in i_str:
|
||||
new_str += '1' if c=='0' else '0'
|
||||
return int(new_str,2)
|
||||
|
||||
def sum32(a,b):
|
||||
return (a + b) % 2**32
|
||||
|
||||
def leftrot32(i,s):
|
||||
return (i << s) ^ (i >> (32-s))
|
||||
|
||||
def md5me(testString):
|
||||
bs =''
|
||||
for i in testString:
|
||||
bs += format(ord(i),'08b')
|
||||
bs = pad(bs)
|
||||
|
||||
tvals = [int(2**32 * abs(math.sin(i+1))) for i in range(64)]
|
||||
|
||||
a0 = 0x67452301
|
||||
b0 = 0xefcdab89
|
||||
c0 = 0x98badcfe
|
||||
d0 = 0x10325476
|
||||
|
||||
s = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, \
|
||||
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, \
|
||||
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \
|
||||
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 ]
|
||||
|
||||
for m in getBlock(bs):
|
||||
A = a0
|
||||
B = b0
|
||||
C = c0
|
||||
D = d0
|
||||
for i in range(64):
|
||||
if i <= 15:
|
||||
#f = (B & C) | (not32(B) & D)
|
||||
f = D ^ (B & (C ^ D))
|
||||
g = i
|
||||
elif i<= 31:
|
||||
#f = (D & B) | (not32(D) & C)
|
||||
f = C ^ (D & (B ^ C))
|
||||
g = (5*i+1) % 16
|
||||
elif i <= 47:
|
||||
f = B ^ C ^ D
|
||||
g = (3*i+5) % 16
|
||||
else:
|
||||
f = C ^ (B | not32(D))
|
||||
g = (7*i) % 16
|
||||
dtemp = D
|
||||
D = C
|
||||
C = B
|
||||
B = sum32(B,leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i]))
|
||||
A = dtemp
|
||||
a0 = sum32(a0, A)
|
||||
b0 = sum32(b0, B)
|
||||
c0 = sum32(c0, C)
|
||||
d0 = sum32(d0, D)
|
||||
|
||||
digest = reformatHex(a0) + reformatHex(b0) + reformatHex(c0) + reformatHex(d0)
|
||||
return digest
|
||||
|
||||
def test():
|
||||
assert md5me("") == "d41d8cd98f00b204e9800998ecf8427e"
|
||||
assert md5me("The quick brown fox jumps over the lazy dog") == "9e107d9d372bb6826bd81d3542a419d6"
|
||||
print("Success.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test()
|
139
machine_learning/decision_tree.py
Normal file
139
machine_learning/decision_tree.py
Normal file
|
@ -0,0 +1,139 @@
|
|||
"""
|
||||
Implementation of a basic regression decision tree.
|
||||
Input data set: The input data set must be 1-dimensional with continuous labels.
|
||||
Output: The decision tree maps a real number input to a real number output.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
class Decision_Tree:
|
||||
def __init__(self, depth = 5, min_leaf_size = 5):
|
||||
self.depth = depth
|
||||
self.decision_boundary = 0
|
||||
self.left = None
|
||||
self.right = None
|
||||
self.min_leaf_size = min_leaf_size
|
||||
self.prediction = None
|
||||
|
||||
def mean_squared_error(self, labels, prediction):
|
||||
"""
|
||||
mean_squared_error:
|
||||
@param labels: a one dimensional numpy array
|
||||
@param prediction: a floating point value
|
||||
return value: mean_squared_error calculates the error if prediction is used to estimate the labels
|
||||
"""
|
||||
if labels.ndim != 1:
|
||||
print("Error: Input labels must be one dimensional")
|
||||
|
||||
return np.mean((labels - prediction) ** 2)
|
||||
|
||||
def train(self, X, y):
|
||||
"""
|
||||
train:
|
||||
@param X: a one dimensional numpy array
|
||||
@param y: a one dimensional numpy array.
|
||||
The contents of y are the labels for the corresponding X values
|
||||
|
||||
train does not have a return value
|
||||
"""
|
||||
|
||||
"""
|
||||
this section is to check that the inputs conform to our dimensionality constraints
|
||||
"""
|
||||
if X.ndim != 1:
|
||||
print("Error: Input data set must be one dimensional")
|
||||
return
|
||||
if len(X) != len(y):
|
||||
print("Error: X and y have different lengths")
|
||||
return
|
||||
if y.ndim != 1:
|
||||
print("Error: Data set labels must be one dimensional")
|
||||
return
|
||||
|
||||
if len(X) < 2 * self.min_leaf_size:
|
||||
self.prediction = np.mean(y)
|
||||
return
|
||||
|
||||
if self.depth == 1:
|
||||
self.prediction = np.mean(y)
|
||||
return
|
||||
|
||||
best_split = 0
|
||||
min_error = self.mean_squared_error(X,np.mean(y)) * 2
|
||||
|
||||
|
||||
"""
|
||||
loop over all possible splits for the decision tree. find the best split.
|
||||
if no split exists that is less than 2 * error for the entire array
|
||||
then the data set is not split and the average for the entire array is used as the predictor
|
||||
"""
|
||||
for i in range(len(X)):
|
||||
if len(X[:i]) < self.min_leaf_size:
|
||||
continue
|
||||
elif len(X[i:]) < self.min_leaf_size:
|
||||
continue
|
||||
else:
|
||||
error_left = self.mean_squared_error(X[:i], np.mean(y[:i]))
|
||||
error_right = self.mean_squared_error(X[i:], np.mean(y[i:]))
|
||||
error = error_left + error_right
|
||||
if error < min_error:
|
||||
best_split = i
|
||||
min_error = error
|
||||
|
||||
if best_split != 0:
|
||||
left_X = X[:best_split]
|
||||
left_y = y[:best_split]
|
||||
right_X = X[best_split:]
|
||||
right_y = y[best_split:]
|
||||
|
||||
self.decision_boundary = X[best_split]
|
||||
self.left = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
|
||||
self.right = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
|
||||
self.left.train(left_X, left_y)
|
||||
self.right.train(right_X, right_y)
|
||||
else:
|
||||
self.prediction = np.mean(y)
|
||||
|
||||
return
|
||||
|
||||
def predict(self, x):
|
||||
"""
|
||||
predict:
|
||||
@param x: a floating point value to predict the label of
|
||||
the prediction function works by recursively calling the predict function
|
||||
of the appropriate subtrees based on the tree's decision boundary
|
||||
"""
|
||||
if self.prediction is not None:
|
||||
return self.prediction
|
||||
elif self.left or self.right is not None:
|
||||
if x >= self.decision_boundary:
|
||||
return self.right.predict(x)
|
||||
else:
|
||||
return self.left.predict(x)
|
||||
else:
|
||||
print("Error: Decision tree not yet trained")
|
||||
return None
|
||||
|
||||
def main():
|
||||
"""
|
||||
In this demonstration we're generating a sample data set from the sin function in numpy.
|
||||
We then train a decision tree on the data set and use the decision tree to predict the
|
||||
label of 10 different test values. Then the mean squared error over this test is displayed.
|
||||
"""
|
||||
X = np.arange(-1., 1., 0.005)
|
||||
y = np.sin(X)
|
||||
|
||||
tree = Decision_Tree(depth = 10, min_leaf_size = 10)
|
||||
tree.train(X,y)
|
||||
|
||||
test_cases = (np.random.rand(10) * 2) - 1
|
||||
predictions = np.array([tree.predict(x) for x in test_cases])
|
||||
avg_error = np.mean((predictions - test_cases) ** 2)
|
||||
|
||||
print("Test values: " + str(test_cases))
|
||||
print("Predictions: " + str(predictions))
|
||||
print("Average error: " + str(avg_error))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
121
machine_learning/gradient_descent.py
Normal file
121
machine_learning/gradient_descent.py
Normal file
|
@ -0,0 +1,121 @@
|
|||
"""
|
||||
Implementation of gradient descent algorithm for minimizing cost of a linear hypothesis function.
|
||||
"""
|
||||
import numpy
|
||||
|
||||
# List of input, output pairs
|
||||
train_data = (((5, 2, 3), 15), ((6, 5, 9), 25),
|
||||
((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41))
|
||||
test_data = (((515, 22, 13), 555), ((61, 35, 49), 150))
|
||||
parameter_vector = [2, 4, 1, 5]
|
||||
m = len(train_data)
|
||||
LEARNING_RATE = 0.009
|
||||
|
||||
|
||||
def _error(example_no, data_set='train'):
|
||||
"""
|
||||
:param data_set: train data or test data
|
||||
:param example_no: example number whose error has to be checked
|
||||
:return: error in example pointed by example number.
|
||||
"""
|
||||
return calculate_hypothesis_value(example_no, data_set) - output(example_no, data_set)
|
||||
|
||||
|
||||
def _hypothesis_value(data_input_tuple):
|
||||
"""
|
||||
Calculates hypothesis function value for a given input
|
||||
:param data_input_tuple: Input tuple of a particular example
|
||||
:return: Value of hypothesis function at that point.
|
||||
Note that there is an 'biased input' whose value is fixed as 1.
|
||||
It is not explicitly mentioned in input data.. But, ML hypothesis functions use it.
|
||||
So, we have to take care of it separately. Line 36 takes care of it.
|
||||
"""
|
||||
hyp_val = 0
|
||||
for i in range(len(parameter_vector) - 1):
|
||||
hyp_val += data_input_tuple[i]*parameter_vector[i+1]
|
||||
hyp_val += parameter_vector[0]
|
||||
return hyp_val
|
||||
|
||||
|
||||
def output(example_no, data_set):
|
||||
"""
|
||||
:param data_set: test data or train data
|
||||
:param example_no: example whose output is to be fetched
|
||||
:return: output for that example
|
||||
"""
|
||||
if data_set == 'train':
|
||||
return train_data[example_no][1]
|
||||
elif data_set == 'test':
|
||||
return test_data[example_no][1]
|
||||
|
||||
|
||||
def calculate_hypothesis_value(example_no, data_set):
|
||||
"""
|
||||
Calculates hypothesis value for a given example
|
||||
:param data_set: test data or train_data
|
||||
:param example_no: example whose hypothesis value is to be calculated
|
||||
:return: hypothesis value for that example
|
||||
"""
|
||||
if data_set == "train":
|
||||
return _hypothesis_value(train_data[example_no][0])
|
||||
elif data_set == "test":
|
||||
return _hypothesis_value(test_data[example_no][0])
|
||||
|
||||
|
||||
def summation_of_cost_derivative(index, end=m):
|
||||
"""
|
||||
Calculates the sum of cost function derivative
|
||||
:param index: index wrt derivative is being calculated
|
||||
:param end: value where summation ends, default is m, number of examples
|
||||
:return: Returns the summation of cost derivative
|
||||
Note: If index is -1, this means we are calculating summation wrt to biased parameter.
|
||||
"""
|
||||
summation_value = 0
|
||||
for i in range(end):
|
||||
if index == -1:
|
||||
summation_value += _error(i)
|
||||
else:
|
||||
summation_value += _error(i)*train_data[i][0][index]
|
||||
return summation_value
|
||||
|
||||
|
||||
def get_cost_derivative(index):
|
||||
"""
|
||||
:param index: index of the parameter vector wrt to derivative is to be calculated
|
||||
:return: derivative wrt to that index
|
||||
Note: If index is -1, this means we are calculating summation wrt to biased parameter.
|
||||
"""
|
||||
cost_derivative_value = summation_of_cost_derivative(index, m)/m
|
||||
return cost_derivative_value
|
||||
|
||||
|
||||
def run_gradient_descent():
|
||||
global parameter_vector
|
||||
# Tune these values to set a tolerance value for predicted output
|
||||
absolute_error_limit = 0.000002
|
||||
relative_error_limit = 0
|
||||
j = 0
|
||||
while True:
|
||||
j += 1
|
||||
temp_parameter_vector = [0, 0, 0, 0]
|
||||
for i in range(0, len(parameter_vector)):
|
||||
cost_derivative = get_cost_derivative(i-1)
|
||||
temp_parameter_vector[i] = parameter_vector[i] - \
|
||||
LEARNING_RATE*cost_derivative
|
||||
if numpy.allclose(parameter_vector, temp_parameter_vector,
|
||||
atol=absolute_error_limit, rtol=relative_error_limit):
|
||||
break
|
||||
parameter_vector = temp_parameter_vector
|
||||
print("Number of iterations:", j)
|
||||
|
||||
|
||||
def test_gradient_descent():
|
||||
for i in range(len(test_data)):
|
||||
print("Actual output value:", output(i, 'test'))
|
||||
print("Hypothesis output:", calculate_hypothesis_value(i, 'test'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_gradient_descent()
|
||||
print("\nTesting gradient descent for a linear hypothesis function.\n")
|
||||
test_gradient_descent()
|
172
machine_learning/k_means_clust.py
Normal file
172
machine_learning/k_means_clust.py
Normal file
|
@ -0,0 +1,172 @@
|
|||
'''README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
|
||||
|
||||
Requirements:
|
||||
- sklearn
|
||||
- numpy
|
||||
- matplotlib
|
||||
|
||||
Python:
|
||||
- 3.5
|
||||
|
||||
Inputs:
|
||||
- X , a 2D numpy array of features.
|
||||
- k , number of clusters to create.
|
||||
- initial_centroids , initial centroid values generated by utility function(mentioned in usage).
|
||||
- maxiter , maximum number of iterations to process.
|
||||
- heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func.
|
||||
|
||||
Usage:
|
||||
1. define 'k' value, 'X' features array and 'hetrogeneity' empty list
|
||||
|
||||
2. create initial_centroids,
|
||||
initial_centroids = get_initial_centroids(
|
||||
X,
|
||||
k,
|
||||
seed=0 # seed value for initial centroid generation, None for randomness(default=None)
|
||||
)
|
||||
|
||||
3. find centroids and clusters using kmeans function.
|
||||
|
||||
centroids, cluster_assignment = kmeans(
|
||||
X,
|
||||
k,
|
||||
initial_centroids,
|
||||
maxiter=400,
|
||||
record_heterogeneity=heterogeneity,
|
||||
verbose=True # whether to print logs in console or not.(default=False)
|
||||
)
|
||||
|
||||
|
||||
4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list.
|
||||
plot_heterogeneity(
|
||||
heterogeneity,
|
||||
k
|
||||
)
|
||||
|
||||
5. Have fun..
|
||||
|
||||
'''
|
||||
from sklearn.metrics import pairwise_distances
|
||||
import numpy as np
|
||||
|
||||
TAG = 'K-MEANS-CLUST/ '
|
||||
|
||||
def get_initial_centroids(data, k, seed=None):
|
||||
'''Randomly choose k data points as initial centroids'''
|
||||
if seed is not None: # useful for obtaining consistent results
|
||||
np.random.seed(seed)
|
||||
n = data.shape[0] # number of data points
|
||||
|
||||
# Pick K indices from range [0, N).
|
||||
rand_indices = np.random.randint(0, n, k)
|
||||
|
||||
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
|
||||
# As long as at least one document in a cluster contains a word,
|
||||
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
|
||||
centroids = data[rand_indices,:]
|
||||
|
||||
return centroids
|
||||
|
||||
def centroid_pairwise_dist(X,centroids):
|
||||
return pairwise_distances(X,centroids,metric='euclidean')
|
||||
|
||||
def assign_clusters(data, centroids):
|
||||
|
||||
# Compute distances between each data point and the set of centroids:
|
||||
# Fill in the blank (RHS only)
|
||||
distances_from_centroids = centroid_pairwise_dist(data,centroids)
|
||||
|
||||
# Compute cluster assignments for each data point:
|
||||
# Fill in the blank (RHS only)
|
||||
cluster_assignment = np.argmin(distances_from_centroids,axis=1)
|
||||
|
||||
return cluster_assignment
|
||||
|
||||
def revise_centroids(data, k, cluster_assignment):
|
||||
new_centroids = []
|
||||
for i in range(k):
|
||||
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
||||
member_data_points = data[cluster_assignment==i]
|
||||
# Compute the mean of the data points. Fill in the blank (RHS only)
|
||||
centroid = member_data_points.mean(axis=0)
|
||||
new_centroids.append(centroid)
|
||||
new_centroids = np.array(new_centroids)
|
||||
|
||||
return new_centroids
|
||||
|
||||
def compute_heterogeneity(data, k, centroids, cluster_assignment):
|
||||
|
||||
heterogeneity = 0.0
|
||||
for i in range(k):
|
||||
|
||||
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
||||
member_data_points = data[cluster_assignment==i, :]
|
||||
|
||||
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
|
||||
# Compute distances from centroid to data points (RHS only)
|
||||
distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean')
|
||||
squared_distances = distances**2
|
||||
heterogeneity += np.sum(squared_distances)
|
||||
|
||||
return heterogeneity
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
def plot_heterogeneity(heterogeneity, k):
|
||||
plt.figure(figsize=(7,4))
|
||||
plt.plot(heterogeneity, linewidth=4)
|
||||
plt.xlabel('# Iterations')
|
||||
plt.ylabel('Heterogeneity')
|
||||
plt.title('Heterogeneity of clustering over time, K={0:d}'.format(k))
|
||||
plt.rcParams.update({'font.size': 16})
|
||||
plt.show()
|
||||
|
||||
def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False):
|
||||
'''This function runs k-means on given data and initial set of centroids.
|
||||
maxiter: maximum number of iterations to run.(default=500)
|
||||
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
|
||||
if None, do not store the history.
|
||||
verbose: if True, print how many data points changed their cluster labels in each iteration'''
|
||||
centroids = initial_centroids[:]
|
||||
prev_cluster_assignment = None
|
||||
|
||||
for itr in range(maxiter):
|
||||
if verbose:
|
||||
print(itr, end='')
|
||||
|
||||
# 1. Make cluster assignments using nearest centroids
|
||||
cluster_assignment = assign_clusters(data,centroids)
|
||||
|
||||
# 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster.
|
||||
centroids = revise_centroids(data,k, cluster_assignment)
|
||||
|
||||
# Check for convergence: if none of the assignments changed, stop
|
||||
if prev_cluster_assignment is not None and \
|
||||
(prev_cluster_assignment==cluster_assignment).all():
|
||||
break
|
||||
|
||||
# Print number of new assignments
|
||||
if prev_cluster_assignment is not None:
|
||||
num_changed = np.sum(prev_cluster_assignment!=cluster_assignment)
|
||||
if verbose:
|
||||
print(' {0:5d} elements changed their cluster assignment.'.format(num_changed))
|
||||
|
||||
# Record heterogeneity convergence metric
|
||||
if record_heterogeneity is not None:
|
||||
# YOUR CODE HERE
|
||||
score = compute_heterogeneity(data,k,centroids,cluster_assignment)
|
||||
record_heterogeneity.append(score)
|
||||
|
||||
prev_cluster_assignment = cluster_assignment[:]
|
||||
|
||||
return centroids, cluster_assignment
|
||||
|
||||
# Mock test below
|
||||
if False: # change to true to run this test case.
|
||||
import sklearn.datasets as ds
|
||||
dataset = ds.load_iris()
|
||||
k = 3
|
||||
heterogeneity = []
|
||||
initial_centroids = get_initial_centroids(dataset['data'], k, seed=0)
|
||||
centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400,
|
||||
record_heterogeneity=heterogeneity, verbose=True)
|
||||
plot_heterogeneity(heterogeneity, k)
|
108
machine_learning/linear_regression.py
Normal file
108
machine_learning/linear_regression.py
Normal file
|
@ -0,0 +1,108 @@
|
|||
"""
|
||||
Linear regression is the most basic type of regression commonly used for
|
||||
predictive analysis. The idea is preety simple, we have a dataset and we have
|
||||
a feature's associated with it. The Features should be choose very cautiously
|
||||
as they determine, how much our model will be able to make future predictions.
|
||||
We try to set these Feature weights, over many iterations, so that they best
|
||||
fits our dataset. In this particular code, i had used a CSGO dataset (ADR vs
|
||||
Rating). We try to best fit a line through dataset and estimate the parameters.
|
||||
"""
|
||||
|
||||
import requests
|
||||
import numpy as np
|
||||
|
||||
|
||||
def collect_dataset():
|
||||
""" Collect dataset of CSGO
|
||||
The dataset contains ADR vs Rating of a Player
|
||||
:return : dataset obtained from the link, as matrix
|
||||
"""
|
||||
response = requests.get('https://raw.githubusercontent.com/yashLadha/' +
|
||||
'The_Math_of_Intelligence/master/Week1/ADRvs' +
|
||||
'Rating.csv')
|
||||
lines = response.text.splitlines()
|
||||
data = []
|
||||
for item in lines:
|
||||
item = item.split(',')
|
||||
data.append(item)
|
||||
data.pop(0) # This is for removing the labels from the list
|
||||
dataset = np.matrix(data)
|
||||
return dataset
|
||||
|
||||
|
||||
def run_steep_gradient_descent(data_x, data_y,
|
||||
len_data, alpha, theta):
|
||||
""" Run steep gradient descent and updates the Feature vector accordingly_
|
||||
:param data_x : contains the dataset
|
||||
:param data_y : contains the output associated with each data-entry
|
||||
:param len_data : length of the data_
|
||||
:param alpha : Learning rate of the model
|
||||
:param theta : Feature vector (weight's for our model)
|
||||
;param return : Updated Feature's, using
|
||||
curr_features - alpha_ * gradient(w.r.t. feature)
|
||||
"""
|
||||
n = len_data
|
||||
|
||||
prod = np.dot(theta, data_x.transpose())
|
||||
prod -= data_y.transpose()
|
||||
sum_grad = np.dot(prod, data_x)
|
||||
theta = theta - (alpha / n) * sum_grad
|
||||
return theta
|
||||
|
||||
|
||||
def sum_of_square_error(data_x, data_y, len_data, theta):
|
||||
""" Return sum of square error for error calculation
|
||||
:param data_x : contains our dataset
|
||||
:param data_y : contains the output (result vector)
|
||||
:param len_data : len of the dataset
|
||||
:param theta : contains the feature vector
|
||||
:return : sum of square error computed from given feature's
|
||||
"""
|
||||
error = 0.0
|
||||
prod = np.dot(theta, data_x.transpose())
|
||||
prod -= data_y.transpose()
|
||||
sum_elem = np.sum(np.square(prod))
|
||||
error = sum_elem / (2 * len_data)
|
||||
return error
|
||||
|
||||
|
||||
def run_linear_regression(data_x, data_y):
|
||||
""" Implement Linear regression over the dataset
|
||||
:param data_x : contains our dataset
|
||||
:param data_y : contains the output (result vector)
|
||||
:return : feature for line of best fit (Feature vector)
|
||||
"""
|
||||
iterations = 100000
|
||||
alpha = 0.0001550
|
||||
|
||||
no_features = data_x.shape[1]
|
||||
len_data = data_x.shape[0] - 1
|
||||
|
||||
theta = np.zeros((1, no_features))
|
||||
|
||||
for i in range(0, iterations):
|
||||
theta = run_steep_gradient_descent(data_x, data_y,
|
||||
len_data, alpha, theta)
|
||||
error = sum_of_square_error(data_x, data_y, len_data, theta)
|
||||
print('At Iteration %d - Error is %.5f ' % (i + 1, error))
|
||||
|
||||
return theta
|
||||
|
||||
|
||||
def main():
|
||||
""" Driver function """
|
||||
data = collect_dataset()
|
||||
|
||||
len_data = data.shape[0]
|
||||
data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float)
|
||||
data_y = data[:, -1].astype(float)
|
||||
|
||||
theta = run_linear_regression(data_x, data_y)
|
||||
len_result = theta.shape[1]
|
||||
print('Resultant Feature vector : ')
|
||||
for i in range(0, len_result):
|
||||
print('%.5f' % (theta[0, i]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
123
machine_learning/perceptron.py
Normal file
123
machine_learning/perceptron.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
'''
|
||||
|
||||
Perceptron
|
||||
w = w + N * (d(k) - y) * x(k)
|
||||
|
||||
Using perceptron network for oil analysis,
|
||||
with Measuring of 3 parameters that represent chemical characteristics we can classify the oil, in p1 or p2
|
||||
p1 = -1
|
||||
p2 = 1
|
||||
|
||||
'''
|
||||
|
||||
import random
|
||||
|
||||
|
||||
class Perceptron:
|
||||
def __init__(self, sample, exit, learn_rate=0.01, epoch_number=1000, bias=-1):
|
||||
self.sample = sample
|
||||
self.exit = exit
|
||||
self.learn_rate = learn_rate
|
||||
self.epoch_number = epoch_number
|
||||
self.bias = bias
|
||||
self.number_sample = len(sample)
|
||||
self.col_sample = len(sample[0])
|
||||
self.weight = []
|
||||
|
||||
def trannig(self):
|
||||
for sample in self.sample:
|
||||
sample.insert(0, self.bias)
|
||||
|
||||
for i in range(self.col_sample):
|
||||
self.weight.append(random.random())
|
||||
|
||||
self.weight.insert(0, self.bias)
|
||||
|
||||
epoch_count = 0
|
||||
|
||||
while True:
|
||||
erro = False
|
||||
for i in range(self.number_sample):
|
||||
u = 0
|
||||
for j in range(self.col_sample + 1):
|
||||
u = u + self.weight[j] * self.sample[i][j]
|
||||
y = self.sign(u)
|
||||
if y != self.exit[i]:
|
||||
|
||||
for j in range(self.col_sample + 1):
|
||||
|
||||
self.weight[j] = self.weight[j] + self.learn_rate * (self.exit[i] - y) * self.sample[i][j]
|
||||
erro = True
|
||||
#print('Epoch: \n',epoch_count)
|
||||
epoch_count = epoch_count + 1
|
||||
# if you want controle the epoch or just by erro
|
||||
if erro == False:
|
||||
print('\nEpoch:\n',epoch_count)
|
||||
print('------------------------\n')
|
||||
#if epoch_count > self.epoch_number or not erro:
|
||||
break
|
||||
|
||||
def sort(self, sample):
|
||||
sample.insert(0, self.bias)
|
||||
u = 0
|
||||
for i in range(self.col_sample + 1):
|
||||
u = u + self.weight[i] * sample[i]
|
||||
|
||||
y = self.sign(u)
|
||||
|
||||
if y == -1:
|
||||
print('Sample: ', sample)
|
||||
print('classification: P1')
|
||||
else:
|
||||
print('Sample: ', sample)
|
||||
print('classification: P2')
|
||||
|
||||
def sign(self, u):
|
||||
return 1 if u >= 0 else -1
|
||||
|
||||
|
||||
samples = [
|
||||
[-0.6508, 0.1097, 4.0009],
|
||||
[-1.4492, 0.8896, 4.4005],
|
||||
[2.0850, 0.6876, 12.0710],
|
||||
[0.2626, 1.1476, 7.7985],
|
||||
[0.6418, 1.0234, 7.0427],
|
||||
[0.2569, 0.6730, 8.3265],
|
||||
[1.1155, 0.6043, 7.4446],
|
||||
[0.0914, 0.3399, 7.0677],
|
||||
[0.0121, 0.5256, 4.6316],
|
||||
[-0.0429, 0.4660, 5.4323],
|
||||
[0.4340, 0.6870, 8.2287],
|
||||
[0.2735, 1.0287, 7.1934],
|
||||
[0.4839, 0.4851, 7.4850],
|
||||
[0.4089, -0.1267, 5.5019],
|
||||
[1.4391, 0.1614, 8.5843],
|
||||
[-0.9115, -0.1973, 2.1962],
|
||||
[0.3654, 1.0475, 7.4858],
|
||||
[0.2144, 0.7515, 7.1699],
|
||||
[0.2013, 1.0014, 6.5489],
|
||||
[0.6483, 0.2183, 5.8991],
|
||||
[-0.1147, 0.2242, 7.2435],
|
||||
[-0.7970, 0.8795, 3.8762],
|
||||
[-1.0625, 0.6366, 2.4707],
|
||||
[0.5307, 0.1285, 5.6883],
|
||||
[-1.2200, 0.7777, 1.7252],
|
||||
[0.3957, 0.1076, 5.6623],
|
||||
[-0.1013, 0.5989, 7.1812],
|
||||
[2.4482, 0.9455, 11.2095],
|
||||
[2.0149, 0.6192, 10.9263],
|
||||
[0.2012, 0.2611, 5.4631]
|
||||
|
||||
]
|
||||
|
||||
exit = [-1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1]
|
||||
|
||||
network = Perceptron(sample=samples, exit = exit, learn_rate=0.01, epoch_number=1000, bias=-1)
|
||||
|
||||
network.trannig()
|
||||
|
||||
while True:
|
||||
sample = []
|
||||
for i in range(3):
|
||||
sample.insert(i, float(input('value: ')))
|
||||
network.sort(sample)
|
63
machine_learning/scoring_functions.py
Normal file
63
machine_learning/scoring_functions.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
import numpy
|
||||
|
||||
""" Here I implemented the scoring functions.
|
||||
MAE, MSE, RMSE, RMSLE are included.
|
||||
|
||||
Those are used for calculating differences between
|
||||
predicted values and actual values.
|
||||
|
||||
Metrics are slightly differentiated. Sometimes squared, rooted,
|
||||
even log is used.
|
||||
|
||||
Using log and roots can be perceived as tools for penalizing big
|
||||
erors. However, using appropriate metrics depends on the situations,
|
||||
and types of data
|
||||
"""
|
||||
|
||||
#Mean Absolute Error
|
||||
def mae(predict, actual):
|
||||
predict = np.array(predict)
|
||||
actual = np.array(actual)
|
||||
|
||||
difference = abs(predict - actual)
|
||||
score = difference.mean()
|
||||
|
||||
return score
|
||||
|
||||
#Mean Squared Error
|
||||
def mse(predict, actual):
|
||||
predict = np.array(predict)
|
||||
actual = np.array(actual)
|
||||
|
||||
difference = predict - actual
|
||||
square_diff = np.square(difference)
|
||||
|
||||
score = square_diff.mean()
|
||||
return score
|
||||
|
||||
#Root Mean Squared Error
|
||||
def rmse(predict, actual):
|
||||
predict = np.array(predict)
|
||||
actual = np.array(actual)
|
||||
|
||||
difference = predict - actual
|
||||
square_diff = np.square(dfference)
|
||||
mean_square_diff = square_diff.mean()
|
||||
score = np.sqrt(mean_square_diff)
|
||||
return score
|
||||
|
||||
#Root Mean Square Logarithmic Error
|
||||
def rmsle(predict, actual):
|
||||
predict = np.array(predict)
|
||||
actual = np.array(actual)
|
||||
|
||||
log_predict = np.log(predict+1)
|
||||
log_actual = np.log(actual+1)
|
||||
|
||||
difference = log_predict - log_actual
|
||||
square_diff = np.square(difference)
|
||||
mean_square_diff = square_diff.mean()
|
||||
|
||||
score = np.sqrt(mean_square_diff)
|
||||
|
||||
return score
|
45333
other/Dictionary.txt
Normal file
45333
other/Dictionary.txt
Normal file
File diff suppressed because it is too large
Load Diff
18
other/FindingPrimes.py
Normal file
18
other/FindingPrimes.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
'''
|
||||
-The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
|
||||
-Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
|
||||
'''
|
||||
from math import sqrt
|
||||
def SOE(n):
|
||||
check = round(sqrt(n)) #Need not check for multiples past the square root of n
|
||||
|
||||
sieve = [False if i <2 else True for i in range(n+1)] #Set every index to False except for index 0 and 1
|
||||
|
||||
for i in range(2, check):
|
||||
if(sieve[i] == True): #If i is a prime
|
||||
for j in range(i+i, n+1, i): #Step through the list in increments of i(the multiples of the prime)
|
||||
sieve[j] = False #Sets every multiple of i to False
|
||||
|
||||
for i in range(n+1):
|
||||
if(sieve[i] == True):
|
||||
print(i, end=" ")
|
34
other/LinearCongruentialGenerator.py
Normal file
34
other/LinearCongruentialGenerator.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
__author__ = "Tobias Carryer"
|
||||
|
||||
from time import time
|
||||
|
||||
class LinearCongruentialGenerator(object):
|
||||
"""
|
||||
A pseudorandom number generator.
|
||||
"""
|
||||
|
||||
def __init__( self, multiplier, increment, modulo, seed=int(time()) ):
|
||||
"""
|
||||
These parameters are saved and used when nextNumber() is called.
|
||||
|
||||
modulo is the largest number that can be generated (exclusive). The most
|
||||
efficent values are powers of 2. 2^32 is a common value.
|
||||
"""
|
||||
self.multiplier = multiplier
|
||||
self.increment = increment
|
||||
self.modulo = modulo
|
||||
self.seed = seed
|
||||
|
||||
def next_number( self ):
|
||||
"""
|
||||
The smallest number that can be generated is zero.
|
||||
The largest number that can be generated is modulo-1. modulo is set in the constructor.
|
||||
"""
|
||||
self.seed = (self.multiplier * self.seed + self.increment) % self.modulo
|
||||
return self.seed
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Show the LCG in action.
|
||||
lcg = LinearCongruentialGenerator(1664525, 1013904223, 2<<31)
|
||||
while True :
|
||||
print lcg.next_number()
|
28
other/anagrams.py
Normal file
28
other/anagrams.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
import collections, pprint, time, os
|
||||
|
||||
start_time = time.time()
|
||||
print('creating word list...')
|
||||
path = os.path.split(os.path.realpath(__file__))
|
||||
word_list = sorted(list(set([word.strip().lower() for word in open(path[0] + '/words')])))
|
||||
|
||||
def signature(word):
|
||||
return ''.join(sorted(word))
|
||||
|
||||
word_bysig = collections.defaultdict(list)
|
||||
for word in word_list:
|
||||
word_bysig[signature(word)].append(word)
|
||||
|
||||
def anagram(myword):
|
||||
return word_bysig[signature(myword)]
|
||||
|
||||
print('finding anagrams...')
|
||||
all_anagrams = {word: anagram(word)
|
||||
for word in word_list if len(anagram(word)) > 1}
|
||||
|
||||
print('writing anagrams to file...')
|
||||
with open('anagrams.txt', 'w') as file:
|
||||
file.write('all_anagrams = ')
|
||||
file.write(pprint.pformat(all_anagrams))
|
||||
|
||||
total_time = round(time.time() - start_time, 2)
|
||||
print('Done [', total_time, 'seconds ]')
|
49
other/binary_exponentiation.py
Normal file
49
other/binary_exponentiation.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
"""
|
||||
* Binary Exponentiation for Powers
|
||||
* This is a method to find a^b in a time complexity of O(log b)
|
||||
* This is one of the most commonly used methods of finding powers.
|
||||
* Also useful in cases where solution to (a^b)%c is required,
|
||||
* where a,b,c can be numbers over the computers calculation limits.
|
||||
* Done using iteration, can also be done using recursion
|
||||
|
||||
* @author chinmoy159
|
||||
* @version 1.0 dated 10/08/2017
|
||||
"""
|
||||
|
||||
|
||||
def b_expo(a, b):
|
||||
res = 1
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res *= a
|
||||
|
||||
a *= a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def b_expo_mod(a, b, c):
|
||||
res = 1
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res = ((res%c) * (a%c)) % c
|
||||
|
||||
a *= a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
"""
|
||||
* Wondering how this method works !
|
||||
* It's pretty simple.
|
||||
* Let's say you need to calculate a ^ b
|
||||
* RULE 1 : a ^ b = (a*a) ^ (b/2) ---- example : 4 ^ 4 = (4*4) ^ (4/2) = 16 ^ 2
|
||||
* RULE 2 : IF b is ODD, then ---- a ^ b = a * (a ^ (b - 1)) :: where (b - 1) is even.
|
||||
* Once b is even, repeat the process to get a ^ b
|
||||
* Repeat the process till b = 1 OR b = 0, because a^1 = a AND a^0 = 1
|
||||
*
|
||||
* As far as the modulo is concerned,
|
||||
* the fact : (a*b) % c = ((a%c) * (b%c)) % c
|
||||
* Now apply RULE 1 OR 2 whichever is required.
|
||||
"""
|
50
other/binary_exponentiation_2.py
Normal file
50
other/binary_exponentiation_2.py
Normal file
|
@ -0,0 +1,50 @@
|
|||
"""
|
||||
* Binary Exponentiation with Multiplication
|
||||
* This is a method to find a*b in a time complexity of O(log b)
|
||||
* This is one of the most commonly used methods of finding result of multiplication.
|
||||
* Also useful in cases where solution to (a*b)%c is required,
|
||||
* where a,b,c can be numbers over the computers calculation limits.
|
||||
* Done using iteration, can also be done using recursion
|
||||
|
||||
* @author chinmoy159
|
||||
* @version 1.0 dated 10/08/2017
|
||||
"""
|
||||
|
||||
|
||||
def b_expo(a, b):
|
||||
res = 0
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res += a
|
||||
|
||||
a += a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def b_expo_mod(a, b, c):
|
||||
res = 0
|
||||
while b > 0:
|
||||
if b&1:
|
||||
res = ((res%c) + (a%c)) % c
|
||||
|
||||
a += a
|
||||
b >>= 1
|
||||
|
||||
return res
|
||||
|
||||
|
||||
"""
|
||||
* Wondering how this method works !
|
||||
* It's pretty simple.
|
||||
* Let's say you need to calculate a ^ b
|
||||
* RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
|
||||
* RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even.
|
||||
* Once b is even, repeat the process to get a * b
|
||||
* Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0
|
||||
*
|
||||
* As far as the modulo is concerned,
|
||||
* the fact : (a+b) % c = ((a%c) + (b%c)) % c
|
||||
* Now apply RULE 1 OR 2, whichever is required.
|
||||
"""
|
55
other/detecting_english_programmatically.py
Normal file
55
other/detecting_english_programmatically.py
Normal file
|
@ -0,0 +1,55 @@
|
|||
import os
|
||||
|
||||
UPPERLETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
||||
LETTERS_AND_SPACE = UPPERLETTERS + UPPERLETTERS.lower() + ' \t\n'
|
||||
|
||||
def loadDictionary():
|
||||
path = os.path.split(os.path.realpath(__file__))
|
||||
dictionaryFile = open(path[0] + '/Dictionary.txt')
|
||||
englishWords = {}
|
||||
for word in dictionaryFile.read().split('\n'):
|
||||
englishWords[word] = None
|
||||
dictionaryFile.close()
|
||||
return englishWords
|
||||
|
||||
ENGLISH_WORDS = loadDictionary()
|
||||
|
||||
def getEnglishCount(message):
|
||||
message = message.upper()
|
||||
message = removeNonLetters(message)
|
||||
possibleWords = message.split()
|
||||
|
||||
if possibleWords == []:
|
||||
return 0.0
|
||||
|
||||
matches = 0
|
||||
for word in possibleWords:
|
||||
if word in ENGLISH_WORDS:
|
||||
matches += 1
|
||||
|
||||
return float(matches) / len(possibleWords)
|
||||
|
||||
def removeNonLetters(message):
|
||||
lettersOnly = []
|
||||
for symbol in message:
|
||||
if symbol in LETTERS_AND_SPACE:
|
||||
lettersOnly.append(symbol)
|
||||
return ''.join(lettersOnly)
|
||||
|
||||
def isEnglish(message, wordPercentage = 20, letterPercentage = 85):
|
||||
"""
|
||||
>>> isEnglish('Hello World')
|
||||
True
|
||||
|
||||
>>> isEnglish('llold HorWd')
|
||||
False
|
||||
"""
|
||||
wordsMatch = getEnglishCount(message) * 100 >= wordPercentage
|
||||
numLetters = len(removeNonLetters(message))
|
||||
messageLettersPercentage = (float(numLetters) / len(message)) * 100
|
||||
lettersMatch = messageLettersPercentage >= letterPercentage
|
||||
return wordsMatch and lettersMatch
|
||||
|
||||
|
||||
import doctest
|
||||
doctest.testmod()
|
18
other/euclidean_gcd.py
Normal file
18
other/euclidean_gcd.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
# https://en.wikipedia.org/wiki/Euclidean_algorithm
|
||||
|
||||
def euclidean_gcd(a, b):
|
||||
while b:
|
||||
t = b
|
||||
b = a % b
|
||||
a = t
|
||||
return a
|
||||
|
||||
def main():
|
||||
print("GCD(3, 5) = " + str(euclidean_gcd(3, 5)))
|
||||
print("GCD(5, 3) = " + str(euclidean_gcd(5, 3)))
|
||||
print("GCD(1, 3) = " + str(euclidean_gcd(1, 3)))
|
||||
print("GCD(3, 6) = " + str(euclidean_gcd(3, 6)))
|
||||
print("GCD(6, 3) = " + str(euclidean_gcd(6, 3)))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
68
other/frequency_finder.py
Normal file
68
other/frequency_finder.py
Normal file
|
@ -0,0 +1,68 @@
|
|||
# Frequency Finder
|
||||
|
||||
# frequency taken from http://en.wikipedia.org/wiki/Letter_frequency
|
||||
englishLetterFreq = {'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97,
|
||||
'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25,
|
||||
'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36,
|
||||
'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29,
|
||||
'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10,
|
||||
'Z': 0.07}
|
||||
ETAOIN = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
|
||||
LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
||||
|
||||
def getLetterCount(message):
|
||||
letterCount = {'A': 0, 'B': 0, 'C': 0, 'D': 0, 'E': 0, 'F': 0, 'G': 0, 'H': 0,
|
||||
'I': 0, 'J': 0, 'K': 0, 'L': 0, 'M': 0, 'N': 0, 'O': 0, 'P': 0,
|
||||
'Q': 0, 'R': 0, 'S': 0, 'T': 0, 'U': 0, 'V': 0, 'W': 0, 'X': 0,
|
||||
'Y': 0, 'Z': 0}
|
||||
for letter in message.upper():
|
||||
if letter in LETTERS:
|
||||
letterCount[letter] += 1
|
||||
|
||||
return letterCount
|
||||
|
||||
def getItemAtIndexZero(x):
|
||||
return x[0]
|
||||
|
||||
def getFrequencyOrder(message):
|
||||
letterToFreq = getLetterCount(message)
|
||||
freqToLetter = {}
|
||||
for letter in LETTERS:
|
||||
if letterToFreq[letter] not in freqToLetter:
|
||||
freqToLetter[letterToFreq[letter]] = [letter]
|
||||
else:
|
||||
freqToLetter[letterToFreq[letter]].append(letter)
|
||||
|
||||
for freq in freqToLetter:
|
||||
freqToLetter[freq].sort(key = ETAOIN.find, reverse = True)
|
||||
freqToLetter[freq] = ''.join(freqToLetter[freq])
|
||||
|
||||
freqPairs = list(freqToLetter.items())
|
||||
freqPairs.sort(key = getItemAtIndexZero, reverse = True)
|
||||
|
||||
freqOrder = []
|
||||
for freqPair in freqPairs:
|
||||
freqOrder.append(freqPair[1])
|
||||
|
||||
return ''.join(freqOrder)
|
||||
|
||||
def englishFreqMatchScore(message):
|
||||
'''
|
||||
>>> englishFreqMatchScore('Hello World')
|
||||
1
|
||||
'''
|
||||
freqOrder = getFrequencyOrder(message)
|
||||
matchScore = 0
|
||||
for commonLetter in ETAOIN[:6]:
|
||||
if commonLetter in freqOrder[:6]:
|
||||
matchScore += 1
|
||||
|
||||
for uncommonLetter in ETAOIN[-6:]:
|
||||
if uncommonLetter in freqOrder[-6:]:
|
||||
matchScore += 1
|
||||
|
||||
return matchScore
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
49
other/nested_brackets.py
Normal file
49
other/nested_brackets.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
'''
|
||||
The nested brackets problem is a problem that determines if a sequence of
|
||||
brackets are properly nested. A sequence of brackets s is considered properly nested
|
||||
if any of the following conditions are true:
|
||||
|
||||
- s is empty
|
||||
- s has the form (U) or [U] or {U} where U is a properly nested string
|
||||
- s has the form VW where V and W are properly nested strings
|
||||
|
||||
For example, the string "()()[()]" is properly nested but "[(()]" is not.
|
||||
|
||||
The function called is_balanced takes as input a string S which is a sequence of brackets and
|
||||
returns true if S is nested and false otherwise.
|
||||
|
||||
'''
|
||||
|
||||
|
||||
def is_balanced(S):
|
||||
|
||||
stack = []
|
||||
open_brackets = set({'(', '[', '{'})
|
||||
closed_brackets = set({')', ']', '}'})
|
||||
open_to_closed = dict({'{':'}', '[':']', '(':')'})
|
||||
|
||||
for i in range(len(S)):
|
||||
|
||||
if S[i] in open_brackets:
|
||||
stack.append(S[i])
|
||||
|
||||
elif S[i] in closed_brackets:
|
||||
if len(stack) == 0 or (len(stack) > 0 and open_to_closed[stack.pop()] != S[i]):
|
||||
return False
|
||||
|
||||
return len(stack) == 0
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
S = input("Enter sequence of brackets: ")
|
||||
|
||||
if is_balanced(S):
|
||||
print(S, "is balanced")
|
||||
|
||||
else:
|
||||
print(S, "is not balanced")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
14
other/password_generator.py
Normal file
14
other/password_generator.py
Normal file
|
@ -0,0 +1,14 @@
|
|||
import string
|
||||
import random
|
||||
|
||||
letters = [letter for letter in string.ascii_letters]
|
||||
digits = [digit for digit in string.digits]
|
||||
symbols = [symbol for symbol in string.punctuation]
|
||||
chars = letters + digits + symbols
|
||||
random.shuffle(chars)
|
||||
|
||||
min_length = 8
|
||||
max_length = 16
|
||||
password = ''.join(random.choice(chars) for x in range(random.randint(min_length, max_length)))
|
||||
print('Password: ' + password)
|
||||
print('[ If you are thinking of using this passsword, You better save it. ]')
|
25
other/tower_of_hanoi.py
Normal file
25
other/tower_of_hanoi.py
Normal file
|
@ -0,0 +1,25 @@
|
|||
def moveTower(height, fromPole, toPole, withPole):
|
||||
'''
|
||||
>>> moveTower(3, 'A', 'B', 'C')
|
||||
moving disk from A to B
|
||||
moving disk from A to C
|
||||
moving disk from B to C
|
||||
moving disk from A to B
|
||||
moving disk from C to A
|
||||
moving disk from C to B
|
||||
moving disk from A to B
|
||||
'''
|
||||
if height >= 1:
|
||||
moveTower(height-1, fromPole, withPole, toPole)
|
||||
moveDisk(fromPole, toPole)
|
||||
moveTower(height-1, withPole, toPole, fromPole)
|
||||
|
||||
def moveDisk(fp,tp):
|
||||
print('moving disk from', fp, 'to', tp)
|
||||
|
||||
def main():
|
||||
height = int(input('Height of hanoi: '))
|
||||
moveTower(height, 'A', 'B', 'C')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
38
other/word_patterns.py
Normal file
38
other/word_patterns.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
import pprint, time
|
||||
|
||||
def getWordPattern(word):
|
||||
word = word.upper()
|
||||
nextNum = 0
|
||||
letterNums = {}
|
||||
wordPattern = []
|
||||
|
||||
for letter in word:
|
||||
if letter not in letterNums:
|
||||
letterNums[letter] = str(nextNum)
|
||||
nextNum += 1
|
||||
wordPattern.append(letterNums[letter])
|
||||
return '.'.join(wordPattern)
|
||||
|
||||
def main():
|
||||
startTime = time.time()
|
||||
allPatterns = {}
|
||||
|
||||
with open('Dictionary.txt') as fo:
|
||||
wordList = fo.read().split('\n')
|
||||
|
||||
for word in wordList:
|
||||
pattern = getWordPattern(word)
|
||||
|
||||
if pattern not in allPatterns:
|
||||
allPatterns[pattern] = [word]
|
||||
else:
|
||||
allPatterns[pattern].append(word)
|
||||
|
||||
with open('Word Patterns.txt', 'w') as fo:
|
||||
fo.write(pprint.pformat(allPatterns))
|
||||
|
||||
totalTime = round(time.time() - startTime, 2)
|
||||
print('Done! [', totalTime, 'seconds ]')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
235886
other/words
Normal file
235886
other/words
Normal file
File diff suppressed because it is too large
Load Diff
162
searches/binary_search.py
Normal file
162
searches/binary_search.py
Normal file
|
@ -0,0 +1,162 @@
|
|||
"""
|
||||
This is pure python implementation of binary search algorithm
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v binary_search.py
|
||||
or
|
||||
python3 -m doctest -v binary_search.py
|
||||
|
||||
For manual testing run:
|
||||
python binary_search.py
|
||||
"""
|
||||
from __future__ import print_function
|
||||
import bisect
|
||||
|
||||
|
||||
def binary_search(sorted_collection, item):
|
||||
"""Pure implementation of binary search algorithm in Python
|
||||
|
||||
Be careful collection must be sorted, otherwise result will be
|
||||
unpredictable
|
||||
|
||||
:param sorted_collection: some sorted collection with comparable items
|
||||
:param item: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
|
||||
Examples:
|
||||
>>> binary_search([0, 5, 7, 10, 15], 0)
|
||||
0
|
||||
|
||||
>>> binary_search([0, 5, 7, 10, 15], 15)
|
||||
4
|
||||
|
||||
>>> binary_search([0, 5, 7, 10, 15], 5)
|
||||
1
|
||||
|
||||
>>> binary_search([0, 5, 7, 10, 15], 6)
|
||||
|
||||
"""
|
||||
left = 0
|
||||
right = len(sorted_collection) - 1
|
||||
|
||||
while left <= right:
|
||||
midpoint = (left + right) // 2
|
||||
current_item = sorted_collection[midpoint]
|
||||
if current_item == item:
|
||||
return midpoint
|
||||
else:
|
||||
if item < current_item:
|
||||
right = midpoint - 1
|
||||
else:
|
||||
left = midpoint + 1
|
||||
return None
|
||||
|
||||
|
||||
def binary_search_std_lib(sorted_collection, item):
|
||||
"""Pure implementation of binary search algorithm in Python using stdlib
|
||||
|
||||
Be careful collection must be sorted, otherwise result will be
|
||||
unpredictable
|
||||
|
||||
:param sorted_collection: some sorted collection with comparable items
|
||||
:param item: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
|
||||
Examples:
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
|
||||
0
|
||||
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
|
||||
4
|
||||
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
|
||||
1
|
||||
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
|
||||
|
||||
"""
|
||||
index = bisect.bisect_left(sorted_collection, item)
|
||||
if index != len(sorted_collection) and sorted_collection[index] == item:
|
||||
return index
|
||||
return None
|
||||
|
||||
def binary_search_by_recursion(sorted_collection, item, left, right):
|
||||
|
||||
"""Pure implementation of binary search algorithm in Python by recursion
|
||||
|
||||
Be careful collection must be sorted, otherwise result will be
|
||||
unpredictable
|
||||
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
|
||||
|
||||
:param sorted_collection: some sorted collection with comparable items
|
||||
:param item: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
|
||||
Examples:
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
|
||||
0
|
||||
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
|
||||
4
|
||||
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
|
||||
1
|
||||
|
||||
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
|
||||
|
||||
"""
|
||||
midpoint = left + (right - left) // 2
|
||||
|
||||
if sorted_collection[midpoint] == item:
|
||||
return midpoint
|
||||
elif sorted_collection[midpoint] > item:
|
||||
return binary_search_by_recursion(sorted_collection, item, left, midpoint-1)
|
||||
else:
|
||||
return binary_search_by_recursion(sorted_collection, item, midpoint+1, right)
|
||||
|
||||
def __assert_sorted(collection):
|
||||
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
|
||||
|
||||
:param collection: collection
|
||||
:return: True if collection is sorted
|
||||
:raise: :py:class:`ValueError` if collection is not sorted
|
||||
|
||||
Examples:
|
||||
>>> __assert_sorted([0, 1, 2, 4])
|
||||
True
|
||||
|
||||
>>> __assert_sorted([10, -1, 5])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Collection must be sorted
|
||||
"""
|
||||
if collection != sorted(collection):
|
||||
raise ValueError('Collection must be sorted')
|
||||
return True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by comma:\n')
|
||||
collection = [int(item) for item in user_input.split(',')]
|
||||
try:
|
||||
__assert_sorted(collection)
|
||||
except ValueError:
|
||||
sys.exit('Sequence must be sorted to apply binary search')
|
||||
|
||||
target_input = input_function(
|
||||
'Enter a single number to be found in the list:\n'
|
||||
)
|
||||
target = int(target_input)
|
||||
result = binary_search(collection, target)
|
||||
if result is not None:
|
||||
print('{} found at positions: {}'.format(target, result))
|
||||
else:
|
||||
print('Not found')
|
102
searches/interpolation_search.py
Normal file
102
searches/interpolation_search.py
Normal file
|
@ -0,0 +1,102 @@
|
|||
"""
|
||||
This is pure python implementation of interpolation search algorithm
|
||||
"""
|
||||
from __future__ import print_function
|
||||
import bisect
|
||||
|
||||
|
||||
def interpolation_search(sorted_collection, item):
|
||||
"""Pure implementation of interpolation search algorithm in Python
|
||||
Be careful collection must be sorted, otherwise result will be
|
||||
unpredictable
|
||||
:param sorted_collection: some sorted collection with comparable items
|
||||
:param item: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
"""
|
||||
left = 0
|
||||
right = len(sorted_collection) - 1
|
||||
|
||||
while left <= right:
|
||||
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
|
||||
|
||||
#out of range check
|
||||
if point<0 or point>=len(sorted_collection):
|
||||
return None
|
||||
|
||||
current_item = sorted_collection[point]
|
||||
if current_item == item:
|
||||
return point
|
||||
else:
|
||||
if item < current_item:
|
||||
right = point - 1
|
||||
else:
|
||||
left = point + 1
|
||||
return None
|
||||
|
||||
|
||||
def interpolation_search_by_recursion(sorted_collection, item, left, right):
|
||||
|
||||
"""Pure implementation of interpolation search algorithm in Python by recursion
|
||||
Be careful collection must be sorted, otherwise result will be
|
||||
unpredictable
|
||||
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
|
||||
:param sorted_collection: some sorted collection with comparable items
|
||||
:param item: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
"""
|
||||
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
|
||||
|
||||
#out of range check
|
||||
if point<0 or point>=len(sorted_collection):
|
||||
return None
|
||||
|
||||
if sorted_collection[point] == item:
|
||||
return point
|
||||
elif sorted_collection[point] > item:
|
||||
return interpolation_search_by_recursion(sorted_collection, item, left, point-1)
|
||||
else:
|
||||
return interpolation_search_by_recursion(sorted_collection, item, point+1, right)
|
||||
|
||||
def __assert_sorted(collection):
|
||||
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
|
||||
:param collection: collection
|
||||
:return: True if collection is sorted
|
||||
:raise: :py:class:`ValueError` if collection is not sorted
|
||||
Examples:
|
||||
>>> __assert_sorted([0, 1, 2, 4])
|
||||
True
|
||||
>>> __assert_sorted([10, -1, 5])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Collection must be sorted
|
||||
"""
|
||||
if collection != sorted(collection):
|
||||
raise ValueError('Collection must be sorted')
|
||||
return True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by comma:\n')
|
||||
collection = [int(item) for item in user_input.split(',')]
|
||||
try:
|
||||
__assert_sorted(collection)
|
||||
except ValueError:
|
||||
sys.exit('Sequence must be sorted to apply interpolation search')
|
||||
|
||||
target_input = input_function(
|
||||
'Enter a single number to be found in the list:\n'
|
||||
)
|
||||
target = int(target_input)
|
||||
result = interpolation_search(collection, target)
|
||||
if result is not None:
|
||||
print('{} found at positions: {}'.format(target, result))
|
||||
else:
|
||||
print('Not found')
|
62
searches/linear_search.py
Normal file
62
searches/linear_search.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
"""
|
||||
This is pure python implementation of linear search algorithm
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v linear_search.py
|
||||
or
|
||||
python3 -m doctest -v linear_search.py
|
||||
|
||||
For manual testing run:
|
||||
python linear_search.py
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def linear_search(sequence, target):
|
||||
"""Pure implementation of linear search algorithm in Python
|
||||
|
||||
:param sequence: some sorted collection with comparable items
|
||||
:param target: item value to search
|
||||
:return: index of found item or None if item is not found
|
||||
|
||||
Examples:
|
||||
>>> linear_search([0, 5, 7, 10, 15], 0)
|
||||
0
|
||||
|
||||
>>> linear_search([0, 5, 7, 10, 15], 15)
|
||||
4
|
||||
|
||||
>>> linear_search([0, 5, 7, 10, 15], 5)
|
||||
1
|
||||
|
||||
>>> linear_search([0, 5, 7, 10, 15], 6)
|
||||
|
||||
"""
|
||||
for index, item in enumerate(sequence):
|
||||
if item == target:
|
||||
return index
|
||||
return None
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by coma:\n')
|
||||
sequence = [int(item) for item in user_input.split(',')]
|
||||
|
||||
target_input = input_function(
|
||||
'Enter a single number to be found in the list:\n'
|
||||
)
|
||||
target = int(target_input)
|
||||
result = linear_search(sequence, target)
|
||||
if result is not None:
|
||||
print('{} found at positions: {}'.format(target, result))
|
||||
else:
|
||||
print('Not found')
|
47
searches/quick_select.py
Normal file
47
searches/quick_select.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
import collections
|
||||
import sys
|
||||
import random
|
||||
import time
|
||||
import math
|
||||
"""
|
||||
A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted
|
||||
https://en.wikipedia.org/wiki/Quickselect
|
||||
"""
|
||||
def _partition(data, pivot):
|
||||
"""
|
||||
Three way partition the data into smaller, equal and greater lists,
|
||||
in relationship to the pivot
|
||||
:param data: The data to be sorted (a list)
|
||||
:param pivot: The value to partition the data on
|
||||
:return: Three list: smaller, equal and greater
|
||||
"""
|
||||
less, equal, greater = [], [], []
|
||||
for element in data:
|
||||
if element.address < pivot.address:
|
||||
less.append(element)
|
||||
elif element.address > pivot.address:
|
||||
greater.append(element)
|
||||
else:
|
||||
equal.append(element)
|
||||
return less, equal, greater
|
||||
|
||||
def quickSelect(list, k):
|
||||
#k = len(list) // 2 when trying to find the median (index that value would be when list is sorted)
|
||||
smaller = []
|
||||
larger = []
|
||||
pivot = random.randint(0, len(list) - 1)
|
||||
pivot = list[pivot]
|
||||
count = 0
|
||||
smaller, equal, larger =_partition(list, pivot)
|
||||
count = len(equal)
|
||||
m = len(smaller)
|
||||
|
||||
#k is the pivot
|
||||
if m <= k < m + count:
|
||||
return pivot
|
||||
# must be in smaller
|
||||
elif m > k:
|
||||
return quickSelect(smaller, k)
|
||||
#must be in larger
|
||||
else:
|
||||
return quickSelect(larger, k - (m + count))
|
112
searches/ternary_search.py
Normal file
112
searches/ternary_search.py
Normal file
|
@ -0,0 +1,112 @@
|
|||
'''
|
||||
This is a type of divide and conquer algorithm which divides the search space into
|
||||
3 parts and finds the target value based on the property of the array or list
|
||||
(usually monotonic property).
|
||||
|
||||
Time Complexity : O(log3 N)
|
||||
Space Complexity : O(1)
|
||||
'''
|
||||
|
||||
import sys
|
||||
|
||||
# This is the precision for this function which can be altered.
|
||||
# It is recommended for users to keep this number greater than or equal to 10.
|
||||
precision = 10
|
||||
|
||||
# This is the linear search that will occur after the search space has become smaller.
|
||||
def lin_search(left, right, A, target):
|
||||
for i in range(left, right+1):
|
||||
if(A[i] == target):
|
||||
return i
|
||||
|
||||
# This is the iterative method of the ternary search algorithm.
|
||||
def ite_ternary_search(A, target):
|
||||
left = 0
|
||||
right = len(A) - 1;
|
||||
while(True):
|
||||
if(left<right):
|
||||
|
||||
if(right-left < precision):
|
||||
return lin_search(left,right,A,target)
|
||||
|
||||
oneThird = (left+right)/3+1;
|
||||
twoThird = 2*(left+right)/3+1;
|
||||
|
||||
if(A[oneThird] == target):
|
||||
return oneThird
|
||||
elif(A[twoThird] == target):
|
||||
return twoThird
|
||||
|
||||
elif(target < A[oneThird]):
|
||||
right = oneThird-1
|
||||
elif(A[twoThird] < target):
|
||||
left = twoThird+1
|
||||
|
||||
else:
|
||||
left = oneThird+1
|
||||
right = twoThird-1
|
||||
else:
|
||||
return None
|
||||
|
||||
# This is the recursive method of the ternary search algorithm.
|
||||
def rec_ternary_search(left, right, A, target):
|
||||
if(left<right):
|
||||
|
||||
if(right-left < precision):
|
||||
return lin_search(left,right,A,target)
|
||||
|
||||
oneThird = (left+right)/3+1;
|
||||
twoThird = 2*(left+right)/3+1;
|
||||
|
||||
if(A[oneThird] == target):
|
||||
return oneThird
|
||||
elif(A[twoThird] == target):
|
||||
return twoThird
|
||||
|
||||
elif(target < A[oneThird]):
|
||||
return rec_ternary_search(left, oneThird-1, A, target)
|
||||
elif(A[twoThird] < target):
|
||||
return rec_ternary_search(twoThird+1, right, A, target)
|
||||
|
||||
else:
|
||||
return rec_ternary_search(oneThird+1, twoThird-1, A, target)
|
||||
else:
|
||||
return None
|
||||
|
||||
# This function is to check if the array is sorted.
|
||||
def __assert_sorted(collection):
|
||||
if collection != sorted(collection):
|
||||
raise ValueError('Collection must be sorted')
|
||||
return True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by coma:\n')
|
||||
collection = [int(item) for item in user_input.split(',')]
|
||||
|
||||
try:
|
||||
__assert_sorted(collection)
|
||||
except ValueError:
|
||||
sys.exit('Sequence must be sorted to apply the ternary search')
|
||||
|
||||
target_input = input_function(
|
||||
'Enter a single number to be found in the list:\n'
|
||||
)
|
||||
target = int(target_input)
|
||||
result1 = ite_ternary_search(collection, target)
|
||||
result2 = rec_ternary_search(0, len(collection)-1, collection, target)
|
||||
|
||||
if result2 is not None:
|
||||
print('Iterative search: {} found at positions: {}'.format(target, result1))
|
||||
print('Recursive search: {} found at positions: {}'.format(target, result2))
|
||||
else:
|
||||
print('Not found')
|
53
sorts/bogosort.py
Normal file
53
sorts/bogosort.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
"""
|
||||
This is a pure python implementation of the bogosort algorithm
|
||||
For doctests run following command:
|
||||
python -m doctest -v bogosort.py
|
||||
or
|
||||
python3 -m doctest -v bogosort.py
|
||||
For manual testing run:
|
||||
python bogosort.py
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import random
|
||||
|
||||
|
||||
def bogosort(collection):
|
||||
"""Pure implementation of the bogosort algorithm in Python
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
Examples:
|
||||
>>> bogosort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
>>> bogosort([])
|
||||
[]
|
||||
>>> bogosort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
|
||||
def isSorted(collection):
|
||||
if len(collection) < 2:
|
||||
return True
|
||||
for i in range(len(collection) - 1):
|
||||
if collection[i] > collection[i + 1]:
|
||||
return False
|
||||
return True
|
||||
|
||||
while not isSorted(collection):
|
||||
random.shuffle(collection)
|
||||
return collection
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(bogosort(unsorted))
|
53
sorts/bubble_sort.py
Normal file
53
sorts/bubble_sort.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
"""
|
||||
This is pure python implementation of bubble sort algorithm
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v bubble_sort.py
|
||||
or
|
||||
python3 -m doctest -v bubble_sort.py
|
||||
|
||||
For manual testing run:
|
||||
python bubble_sort.py
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def bubble_sort(collection):
|
||||
"""Pure implementation of bubble sort algorithm in Python
|
||||
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
|
||||
Examples:
|
||||
>>> bubble_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
|
||||
>>> bubble_sort([])
|
||||
[]
|
||||
|
||||
>>> bubble_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
length = len(collection)
|
||||
for i in range(length-1, -1, -1):#range(length-1, -1, -1)
|
||||
for j in range(i):#range(1, i)
|
||||
if collection[j] > collection[j+1]:
|
||||
collection[j], collection[j+1] = collection[j+1], collection[j]
|
||||
|
||||
return collection
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(bubble_sort(unsorted))
|
56
sorts/bucket_sort.py
Normal file
56
sorts/bucket_sort.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
#!/usr/bin/env python
|
||||
# Author: OMKAR PATHAK
|
||||
# This program will illustrate how to implement bucket sort algorithm
|
||||
|
||||
# Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the
|
||||
# elements of an array into a number of buckets. Each bucket is then sorted individually, either using
|
||||
# a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a
|
||||
# distribution sort, and is a cousin of radix sort in the most to least significant digit flavour.
|
||||
# Bucket sort is a generalization of pigeonhole sort. Bucket sort can be implemented with comparisons
|
||||
# and therefore can also be considered a comparison sort algorithm. The computational complexity estimates
|
||||
# involve the number of buckets.
|
||||
|
||||
# Time Complexity of Solution:
|
||||
# Best Case O(n); Average Case O(n); Worst Case O(n)
|
||||
|
||||
from P26_InsertionSort import insertionSort
|
||||
import math
|
||||
|
||||
DEFAULT_BUCKET_SIZE = 5
|
||||
|
||||
def bucketSort(myList, bucketSize=DEFAULT_BUCKET_SIZE):
|
||||
if(len(myList) == 0):
|
||||
print('You don\'t have any elements in array!')
|
||||
|
||||
minValue = myList[0]
|
||||
maxValue = myList[0]
|
||||
|
||||
# For finding minimum and maximum values
|
||||
for i in range(0, len(myList)):
|
||||
if myList[i] < minValue:
|
||||
minValue = myList[i]
|
||||
elif myList[i] > maxValue:
|
||||
maxValue = myList[i]
|
||||
|
||||
# Initialize buckets
|
||||
bucketCount = math.floor((maxValue - minValue) / bucketSize) + 1
|
||||
buckets = []
|
||||
for i in range(0, bucketCount):
|
||||
buckets.append([])
|
||||
|
||||
# For putting values in buckets
|
||||
for i in range(0, len(myList)):
|
||||
buckets[math.floor((myList[i] - minValue) / bucketSize)].append(myList[i])
|
||||
|
||||
# Sort buckets and place back into input array
|
||||
sortedArray = []
|
||||
for i in range(0, len(buckets)):
|
||||
insertionSort(buckets[i])
|
||||
for j in range(0, len(buckets[i])):
|
||||
sortedArray.append(buckets[i][j])
|
||||
|
||||
return sortedArray
|
||||
|
||||
if __name__ == '__main__':
|
||||
sortedArray = bucketSort([12, 23, 4, 5, 3, 2, 12, 81, 56, 95])
|
||||
print(sortedArray)
|
36
sorts/cocktail_shaker_sort.py
Normal file
36
sorts/cocktail_shaker_sort.py
Normal file
|
@ -0,0 +1,36 @@
|
|||
from __future__ import print_function
|
||||
|
||||
def cocktail_shaker_sort(unsorted):
|
||||
"""
|
||||
Pure implementation of the cocktail shaker sort algorithm in Python.
|
||||
"""
|
||||
for i in range(len(unsorted)-1, 0, -1):
|
||||
swapped = False
|
||||
|
||||
for j in range(i, 0, -1):
|
||||
if unsorted[j] < unsorted[j-1]:
|
||||
unsorted[j], unsorted[j-1] = unsorted[j-1], unsorted[j]
|
||||
swapped = True
|
||||
|
||||
for j in range(i):
|
||||
if unsorted[j] > unsorted[j+1]:
|
||||
unsorted[j], unsorted[j+1] = unsorted[j+1], unsorted[j]
|
||||
swapped = True
|
||||
|
||||
if not swapped:
|
||||
return unsorted
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
cocktail_shaker_sort(unsorted)
|
||||
print(unsorted)
|
72
sorts/counting_sort.py
Normal file
72
sorts/counting_sort.py
Normal file
|
@ -0,0 +1,72 @@
|
|||
"""
|
||||
This is pure python implementation of counting sort algorithm
|
||||
For doctests run following command:
|
||||
python -m doctest -v counting_sort.py
|
||||
or
|
||||
python3 -m doctest -v counting_sort.py
|
||||
For manual testing run:
|
||||
python counting_sort.py
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def counting_sort(collection):
|
||||
"""Pure implementation of counting sort algorithm in Python
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
Examples:
|
||||
>>> counting_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
>>> counting_sort([])
|
||||
[]
|
||||
>>> counting_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
# if the collection is empty, returns empty
|
||||
if collection == []:
|
||||
return []
|
||||
|
||||
# get some information about the collection
|
||||
coll_len = len(collection)
|
||||
coll_max = max(collection)
|
||||
coll_min = min(collection)
|
||||
|
||||
# create the counting array
|
||||
counting_arr_length = coll_max + 1 - coll_min
|
||||
counting_arr = [0] * counting_arr_length
|
||||
|
||||
# count how much a number appears in the collection
|
||||
for number in collection:
|
||||
counting_arr[number - coll_min] += 1
|
||||
|
||||
# sum each position with it's predecessors. now, counting_arr[i] tells
|
||||
# us how many elements <= i has in the collection
|
||||
for i in range(1, counting_arr_length):
|
||||
counting_arr[i] = counting_arr[i] + counting_arr[i-1]
|
||||
|
||||
# create the output collection
|
||||
ordered = [0] * coll_len
|
||||
|
||||
# place the elements in the output, respecting the original order (stable
|
||||
# sort) from end to begin, updating counting_arr
|
||||
for i in reversed(range(0, coll_len)):
|
||||
ordered[counting_arr[collection[i] - coll_min]-1] = collection[i]
|
||||
counting_arr[collection[i] - coll_min] -= 1
|
||||
|
||||
return ordered
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(counting_sort(unsorted))
|
34
sorts/gnome_sort.py
Normal file
34
sorts/gnome_sort.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
from __future__ import print_function
|
||||
|
||||
def gnome_sort(unsorted):
|
||||
"""
|
||||
Pure implementation of the gnome sort algorithm in Python.
|
||||
"""
|
||||
if len(unsorted) <= 1:
|
||||
return unsorted
|
||||
|
||||
i = 1
|
||||
|
||||
while i < len(unsorted):
|
||||
if unsorted[i-1] <= unsorted[i]:
|
||||
i += 1
|
||||
else:
|
||||
unsorted[i-1], unsorted[i] = unsorted[i], unsorted[i-1]
|
||||
i -= 1
|
||||
if (i == 0):
|
||||
i = 1
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
gnome_sort(unsorted)
|
||||
print(unsorted)
|
65
sorts/heap_sort.py
Normal file
65
sorts/heap_sort.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
'''
|
||||
This is a pure python implementation of the heap sort algorithm.
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v heap_sort.py
|
||||
or
|
||||
python3 -m doctest -v heap_sort.py
|
||||
|
||||
For manual testing run:
|
||||
python heap_sort.py
|
||||
'''
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def heapify(unsorted, index, heap_size):
|
||||
largest = index
|
||||
left_index = 2 * index + 1
|
||||
right_index = 2 * index + 2
|
||||
if left_index < heap_size and unsorted[left_index] > unsorted[largest]:
|
||||
largest = left_index
|
||||
|
||||
if right_index < heap_size and unsorted[right_index] > unsorted[largest]:
|
||||
largest = right_index
|
||||
|
||||
if largest != index:
|
||||
unsorted[largest], unsorted[index] = unsorted[index], unsorted[largest]
|
||||
heapify(unsorted, largest, heap_size)
|
||||
|
||||
|
||||
def heap_sort(unsorted):
|
||||
'''
|
||||
Pure implementation of the heap sort algorithm in Python
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
|
||||
Examples:
|
||||
>>> heap_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
|
||||
>>> heap_sort([])
|
||||
[]
|
||||
|
||||
>>> heap_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
'''
|
||||
n = len(unsorted)
|
||||
for i in range(n // 2 - 1, -1, -1):
|
||||
heapify(unsorted, i, n)
|
||||
for i in range(n - 1, 0, -1):
|
||||
unsorted[0], unsorted[i] = unsorted[i], unsorted[0]
|
||||
heapify(unsorted, 0, i)
|
||||
return unsorted
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(heap_sort(unsorted))
|
53
sorts/insertion_sort.py
Normal file
53
sorts/insertion_sort.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
"""
|
||||
This is a pure python implementation of the insertion sort algorithm
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v insertion_sort.py
|
||||
or
|
||||
python3 -m doctest -v insertion_sort.py
|
||||
|
||||
For manual testing run:
|
||||
python insertion_sort.py
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def insertion_sort(collection):
|
||||
"""Pure implementation of the insertion sort algorithm in Python
|
||||
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
|
||||
Examples:
|
||||
>>> insertion_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
|
||||
>>> insertion_sort([])
|
||||
[]
|
||||
|
||||
>>> insertion_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
for index in range(1, len(collection)):
|
||||
while 0 < index and collection[index] < collection[index - 1]:
|
||||
collection[index], collection[
|
||||
index - 1] = collection[index - 1], collection[index]
|
||||
index -= 1
|
||||
|
||||
return collection
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(insertion_sort(unsorted))
|
76
sorts/merge_sort.py
Normal file
76
sorts/merge_sort.py
Normal file
|
@ -0,0 +1,76 @@
|
|||
"""
|
||||
This is a pure python implementation of the merge sort algorithm
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v merge_sort.py
|
||||
or
|
||||
python3 -m doctest -v merge_sort.py
|
||||
|
||||
For manual testing run:
|
||||
python merge_sort.py
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def merge_sort(collection):
|
||||
"""Pure implementation of the merge sort algorithm in Python
|
||||
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
|
||||
Examples:
|
||||
>>> merge_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
|
||||
>>> merge_sort([])
|
||||
[]
|
||||
|
||||
>>> merge_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
length = len(collection)
|
||||
if length > 1:
|
||||
midpoint = length // 2
|
||||
left_half = merge_sort(collection[:midpoint])
|
||||
right_half = merge_sort(collection[midpoint:])
|
||||
i = 0
|
||||
j = 0
|
||||
k = 0
|
||||
left_length = len(left_half)
|
||||
right_length = len(right_half)
|
||||
while i < left_length and j < right_length:
|
||||
if left_half[i] < right_half[j]:
|
||||
collection[k] = left_half[i]
|
||||
i += 1
|
||||
else:
|
||||
collection[k] = right_half[j]
|
||||
j += 1
|
||||
k += 1
|
||||
|
||||
while i < left_length:
|
||||
collection[k] = left_half[i]
|
||||
i += 1
|
||||
k += 1
|
||||
|
||||
while j < right_length:
|
||||
collection[k] = right_half[j]
|
||||
j += 1
|
||||
k += 1
|
||||
|
||||
return collection
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(merge_sort(unsorted))
|
76
sorts/normal_distribution_QuickSort_README.md
Normal file
76
sorts/normal_distribution_QuickSort_README.md
Normal file
|
@ -0,0 +1,76 @@
|
|||
#Normal Distribution QuickSort
|
||||
|
||||
|
||||
Algorithm implementing QuickSort Algorithm where the pivot element is chosen randomly between first and last elements of the array and the array elements are taken from a Standard Normal Distribution.
|
||||
This is different from the ordinary quicksort in the sense, that it applies more to real life problems , where elements usually follow a normal distribution. Also the pivot is randomized to make it a more generic one.
|
||||
|
||||
|
||||
##Array Elements
|
||||
|
||||
The array elements are taken from a Standard Normal Distribution , having mean = 0 and standard deviation 1.
|
||||
|
||||
####The code
|
||||
|
||||
```python
|
||||
|
||||
>>> import numpy as np
|
||||
>>> from tempfile import TemporaryFile
|
||||
>>> outfile = TemporaryFile()
|
||||
>>> p = 100 # 100 elements are to be sorted
|
||||
>>> mu, sigma = 0, 1 # mean and standard deviation
|
||||
>>> X = np.random.normal(mu, sigma, p)
|
||||
>>> np.save(outfile, X)
|
||||
>>> print('The array is')
|
||||
>>> print(X)
|
||||
|
||||
```
|
||||
|
||||
------
|
||||
|
||||
#### The Distribution of the Array elements.
|
||||
|
||||
```python
|
||||
>>> mu, sigma = 0, 1 # mean and standard deviation
|
||||
>>> s = np.random.normal(mu, sigma, p)
|
||||
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
|
||||
>>> plt.plot(bins , 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')
|
||||
>>> plt.show()
|
||||
|
||||
```
|
||||
|
||||
|
||||
-----
|
||||
|
||||
|
||||
|
||||
|
||||
![](https://www.mathsisfun.com/data/images/normal-distrubution-large.gif)
|
||||
|
||||
---
|
||||
|
||||
---------------------
|
||||
|
||||
--
|
||||
|
||||
##Plotting the function for Checking 'The Number of Comparisons' taking place between Normal Distribution QuickSort and Ordinary QuickSort
|
||||
|
||||
```python
|
||||
>>>import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# Normal Disrtibution QuickSort is red
|
||||
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,6,15,43,136,340,800,2156,6821,16325],linewidth=2, color='r')
|
||||
|
||||
#Ordinary QuickSort is green
|
||||
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,4,16,67,122,362,949,2131,5086,12866],linewidth=2, color='g')
|
||||
|
||||
>>> plt.show()
|
||||
|
||||
```
|
||||
|
||||
|
||||
----
|
||||
|
||||
|
||||
------------------
|
||||
|
54
sorts/quick_sort.py
Normal file
54
sorts/quick_sort.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
"""
|
||||
This is a pure python implementation of the quick sort algorithm
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v quick_sort.py
|
||||
or
|
||||
python3 -m doctest -v quick_sort.py
|
||||
|
||||
For manual testing run:
|
||||
python quick_sort.py
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def quick_sort(ARRAY):
|
||||
"""Pure implementation of quick sort algorithm in Python
|
||||
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
|
||||
Examples:
|
||||
>>> quick_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
|
||||
>>> quick_sort([])
|
||||
[]
|
||||
|
||||
>>> quick_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
ARRAY_LENGTH = len(ARRAY)
|
||||
if( ARRAY_LENGTH <= 1):
|
||||
return ARRAY
|
||||
else:
|
||||
PIVOT = ARRAY[0]
|
||||
GREATER = [ element for element in ARRAY[1:] if element > PIVOT ]
|
||||
LESSER = [ element for element in ARRAY[1:] if element <= PIVOT ]
|
||||
return quick_sort(LESSER) + [PIVOT] + quick_sort(GREATER)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [ int(item) for item in user_input.split(',') ]
|
||||
print( quick_sort(unsorted) )
|
27
sorts/radix_sort.py
Normal file
27
sorts/radix_sort.py
Normal file
|
@ -0,0 +1,27 @@
|
|||
def radixsort(lst):
|
||||
RADIX = 10
|
||||
maxLength = False
|
||||
tmp , placement = -1, 1
|
||||
|
||||
while not maxLength:
|
||||
maxLength = True
|
||||
# declare and initialize buckets
|
||||
buckets = [list() for _ in range( RADIX )]
|
||||
|
||||
# split lst between lists
|
||||
for i in lst:
|
||||
tmp = i // placement
|
||||
buckets[tmp % RADIX].append( i )
|
||||
if maxLength and tmp > 0:
|
||||
maxLength = False
|
||||
|
||||
# empty lists into lst array
|
||||
a = 0
|
||||
for b in range( RADIX ):
|
||||
buck = buckets[b]
|
||||
for i in buck:
|
||||
lst[a] = i
|
||||
a += 1
|
||||
|
||||
# move to next
|
||||
placement *= RADIX
|
66
sorts/random_normaldistribution_quicksort.py
Normal file
66
sorts/random_normaldistribution_quicksort.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
from random import randint
|
||||
from tempfile import TemporaryFile
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
|
||||
|
||||
def _inPlaceQuickSort(A,start,end):
|
||||
count = 0
|
||||
if start<end:
|
||||
pivot=randint(start,end)
|
||||
temp=A[end]
|
||||
A[end]=A[pivot]
|
||||
A[pivot]=temp
|
||||
|
||||
p,count= _inPlacePartition(A,start,end)
|
||||
count += _inPlaceQuickSort(A,start,p-1)
|
||||
count += _inPlaceQuickSort(A,p+1,end)
|
||||
return count
|
||||
|
||||
def _inPlacePartition(A,start,end):
|
||||
|
||||
count = 0
|
||||
pivot= randint(start,end)
|
||||
temp=A[end]
|
||||
A[end]=A[pivot]
|
||||
A[pivot]=temp
|
||||
newPivotIndex=start-1
|
||||
for index in range(start,end):
|
||||
|
||||
count += 1
|
||||
if A[index]<A[end]:#check if current val is less than pivot value
|
||||
newPivotIndex=newPivotIndex+1
|
||||
temp=A[newPivotIndex]
|
||||
A[newPivotIndex]=A[index]
|
||||
A[index]=temp
|
||||
|
||||
temp=A[newPivotIndex+1]
|
||||
A[newPivotIndex+1]=A[end]
|
||||
A[end]=temp
|
||||
return newPivotIndex+1,count
|
||||
|
||||
outfile = TemporaryFile()
|
||||
p = 100 # 1000 elements are to be sorted
|
||||
|
||||
|
||||
|
||||
|
||||
mu, sigma = 0, 1 # mean and standard deviation
|
||||
X = np.random.normal(mu, sigma, p)
|
||||
np.save(outfile, X)
|
||||
print('The array is')
|
||||
print(X)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
outfile.seek(0) # using the same array
|
||||
M = np.load(outfile)
|
||||
r = (len(M)-1)
|
||||
z = _inPlaceQuickSort(M,0,r)
|
||||
|
||||
print("No of Comparisons for 100 elements selected from a standard normal distribution is :")
|
||||
print(z)
|
56
sorts/selection_sort.py
Normal file
56
sorts/selection_sort.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
"""
|
||||
This is a pure python implementation of the selection sort algorithm
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v selection_sort.py
|
||||
or
|
||||
python3 -m doctest -v selection_sort.py
|
||||
|
||||
For manual testing run:
|
||||
python selection_sort.py
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def selection_sort(collection):
|
||||
"""Pure implementation of the selection sort algorithm in Python
|
||||
:param collection: some mutable ordered collection with heterogeneous
|
||||
comparable items inside
|
||||
:return: the same collection ordered by ascending
|
||||
|
||||
|
||||
Examples:
|
||||
>>> selection_sort([0, 5, 3, 2, 2])
|
||||
[0, 2, 2, 3, 5]
|
||||
|
||||
>>> selection_sort([])
|
||||
[]
|
||||
|
||||
>>> selection_sort([-2, -5, -45])
|
||||
[-45, -5, -2]
|
||||
"""
|
||||
|
||||
length = len(collection)
|
||||
for i in range(length):
|
||||
least = i
|
||||
for k in range(i + 1, length):
|
||||
if collection[k] < collection[least]:
|
||||
least = k
|
||||
collection[least], collection[i] = (
|
||||
collection[i], collection[least]
|
||||
)
|
||||
return collection
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import sys
|
||||
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
|
||||
# otherwise 2.x's input builtin function is too "smart"
|
||||
if sys.version_info.major < 3:
|
||||
input_function = raw_input
|
||||
else:
|
||||
input_function = input
|
||||
|
||||
user_input = input_function('Enter numbers separated by a comma:\n')
|
||||
unsorted = [int(item) for item in user_input.split(',')]
|
||||
print(selection_sort(unsorted))
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user