Python/Neural_Network/neuralnetwork_bp3.py
2017-10-25 01:37:11 +05:30

153 lines
5.0 KiB
Python

#-*- coding:utf-8 -*-
'''
Author: Stephen Lee
Date: 2017.9.21
BP neural network with three layers
'''
import numpy as np
import matplotlib.pyplot as plt
class Bpnn():
def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3):
'''
:param n_layer1: number of input layer
:param n_layer2: number of hiden layer
:param n_layer3: number of output layer
:param rate_w: rate of weight learning
:param rate_t: rate of threshold learning
'''
self.num1 = n_layer1
self.num2 = n_layer2
self.num3 = n_layer3
self.rate_weight = rate_w
self.rate_thre = rate_t
self.thre2 = -2*np.random.rand(self.num2)+1
self.thre3 = -2*np.random.rand(self.num3)+1
self.vji = np.mat(-2*np.random.rand(self.num2, self.num1)+1)
self.wkj = np.mat(-2*np.random.rand(self.num3, self.num2)+1)
def sig(self,x):
return 1 / (1 + np.exp(-1*x))
def sig_plain(self,x):
return 1 / (1 + np.exp(-1*x))
def do_round(self,x):
return round(x, 3)
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e=False):
'''
:param patterns: the number of patterns
:param data_train: training data x; numpy.ndarray
:param data_teach: training data y; numpy.ndarray
:param n_repeat: echoes
:param error_accuracy: error accuracy
:return: None
'''
data_train = np.asarray(data_train)
data_teach = np.asarray(data_teach)
# print('-------------------Start Training-------------------------')
# print(' - - Shape: Train_Data ',np.shape(data_train))
# print(' - - Shape: Teach_Data ',np.shape(data_teach))
rp = 0
all_mse = []
mse = 10000
while rp < n_repeat and mse >= error_accuracy:
alle = 0
final_out = []
for g in range(np.shape(data_train)[0]):
net_i = data_train[g]
out1 = net_i
net_j = out1 * self.vji.T - self.thre2
out2=self.sig(net_j)
net_k = out2 * self.wkj.T - self.thre3
out3 = self.sig(net_k)
# learning process
pd_k_all = np.multiply(np.multiply(out3,(1 - out3)),(data_teach[g]-out3))
pd_j_all = np.multiply(pd_k_all * self.wkj,np.multiply(out2,1-out2))
#upgrade weight
self.wkj = self.wkj + pd_k_all.T * out2 *self.rate_weight
self.vji = self.vji + pd_j_all.T * out1 * self.rate_weight
#upgrade threshold
self.thre3 = self.thre3 - pd_k_all * self.rate_thre
self.thre2 = self.thre2 - pd_j_all * self.rate_thre
#calculate sum of error
errors = np.sum(abs((data_teach[g] - out3)))
alle = alle + errors
final_out.extend(out3.getA().tolist())
final_out3 = [list(map(self.do_round,each)) for each in final_out]
rp = rp + 1
mse = alle/patterns
all_mse.append(mse)
def draw_error():
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(all_mse, '+-')
plt.plot(yplot, 'r--')
plt.xlabel('Learning Times')
plt.ylabel('All_mse')
plt.grid(True,alpha = 0.7)
plt.show()
# print('------------------Training Complished---------------------')
# print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
# print(' - - Last Output: ', final_out3)
if draw_e:
draw_error()
def predict(self,data_test):
'''
:param data_test: data test, numpy.ndarray
:return: predict output data
'''
data_test = np.asarray(data_test)
produce_out = []
# print('-------------------Start Testing-------------------------')
# print(' - - Shape: Test_Data ',np.shape(data_test))
# print(np.shape(data_test))
for g in range(np.shape(data_test)[0]):
net_i = data_test[g]
out1 = net_i
net_j = out1 * self.vji.T - self.thre2
out2 = self.sig(net_j)
net_k = out2 * self.wkj.T - self.thre3
out3 = self.sig(net_k)
produce_out.extend(out3.getA().tolist())
res = [list(map(self.do_round,each)) for each in produce_out]
return np.asarray(res)
def main():
#example data
data_x = [[1,2,3,4],
[5,6,7,8],
[2,2,3,4],
[7,7,8,8]]
data_y = [[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]]
test_x = [[1,2,3,4],
[3,2,3,4]]
#building network model
model = Bpnn(4,10,4)
#training the model
model.trian(patterns=4,data_train=data_x,data_teach=data_y,
n_repeat=100,error_accuracy=0.1,draw_e=True)
#predicting data
model.predict(test_x)
if __name__ == '__main__':
main()