mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 13:31:07 +00:00
57 lines
2.0 KiB
Python
57 lines
2.0 KiB
Python
|
#!/usr/bin/env python
|
||
|
# Author: OMKAR PATHAK
|
||
|
# This program will illustrate how to implement bucket sort algorithm
|
||
|
|
||
|
# Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the
|
||
|
# elements of an array into a number of buckets. Each bucket is then sorted individually, either using
|
||
|
# a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a
|
||
|
# distribution sort, and is a cousin of radix sort in the most to least significant digit flavour.
|
||
|
# Bucket sort is a generalization of pigeonhole sort. Bucket sort can be implemented with comparisons
|
||
|
# and therefore can also be considered a comparison sort algorithm. The computational complexity estimates
|
||
|
# involve the number of buckets.
|
||
|
|
||
|
# Time Complexity of Solution:
|
||
|
# Best Case O(n); Average Case O(n); Worst Case O(n)
|
||
|
|
||
|
from P26_InsertionSort import insertionSort
|
||
|
import math
|
||
|
|
||
|
DEFAULT_BUCKET_SIZE = 5
|
||
|
|
||
|
def bucketSort(myList, bucketSize=DEFAULT_BUCKET_SIZE):
|
||
|
if(len(myList) == 0):
|
||
|
print('You don\'t have any elements in array!')
|
||
|
|
||
|
minValue = myList[0]
|
||
|
maxValue = myList[0]
|
||
|
|
||
|
# For finding minimum and maximum values
|
||
|
for i in range(0, len(myList)):
|
||
|
if myList[i] < minValue:
|
||
|
minValue = myList[i]
|
||
|
elif myList[i] > maxValue:
|
||
|
maxValue = myList[i]
|
||
|
|
||
|
# Initialize buckets
|
||
|
bucketCount = math.floor((maxValue - minValue) / bucketSize) + 1
|
||
|
buckets = []
|
||
|
for i in range(0, bucketCount):
|
||
|
buckets.append([])
|
||
|
|
||
|
# For putting values in buckets
|
||
|
for i in range(0, len(myList)):
|
||
|
buckets[math.floor((myList[i] - minValue) / bucketSize)].append(myList[i])
|
||
|
|
||
|
# Sort buckets and place back into input array
|
||
|
sortedArray = []
|
||
|
for i in range(0, len(buckets)):
|
||
|
insertionSort(buckets[i])
|
||
|
for j in range(0, len(buckets[i])):
|
||
|
sortedArray.append(buckets[i][j])
|
||
|
|
||
|
return sortedArray
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
sortedArray = bucketSort([12, 23, 4, 5, 3, 2, 12, 81, 56, 95])
|
||
|
print(sortedArray)
|