mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
Project Euler Solution Added
This commit is contained in:
parent
3fae059b61
commit
0f78cd6a55
20
Project Euler/Problem 14/sol1.py
Normal file
20
Project Euler/Problem 14/sol1.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
largest_number = 0
|
||||
pre_counter = 0
|
||||
|
||||
for input1 in range(750000,1000000):
|
||||
counter = 1
|
||||
number = input1
|
||||
|
||||
while number > 1:
|
||||
if number % 2 == 0:
|
||||
number /=2
|
||||
counter += 1
|
||||
else:
|
||||
number = (3*number)+1
|
||||
counter += 1
|
||||
|
||||
if counter > pre_counter:
|
||||
largest_number = input1
|
||||
pre_counter = counter
|
||||
|
||||
print('Largest Number:',largest_number,'->',pre_counter,'digits')
|
|
@ -42,3 +42,10 @@ PROBLEMS:
|
|||
a^2 + b^2 = c^2
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
|
||||
14. The following iterative sequence is defined for the set of positive integers:
|
||||
n → n/2 (n is even)
|
||||
n → 3n + 1 (n is odd)
|
||||
Using the rule above and starting with 13, we generate the following sequence:
|
||||
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
|
||||
Which starting number, under one million, produces the longest chain?
|
||||
|
|
Loading…
Reference in New Issue
Block a user